Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
- Autores
- Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina
Fil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; Argentina - Materia
-
Composite Laminate
Large Displacements
Solid-Shell
Transverse Shear - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63593
Ver los metadatos del registro completo
id |
CONICETDig_008c6a3c5733bff2d6fa08fd8efbc01e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63593 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximationsFlores, Fernando GabrielNallim, LizOller, Sergio Horacio CristobalComposite LaminateLarge DisplacementsSolid-ShellTransverse Shearhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; ArgentinaFil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63593Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-520168-874XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.03.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168874X16304528info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:38Zoai:ri.conicet.gov.ar:11336/63593instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:39.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
title |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
spellingShingle |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations Flores, Fernando Gabriel Composite Laminate Large Displacements Solid-Shell Transverse Shear |
title_short |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
title_full |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
title_fullStr |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
title_full_unstemmed |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
title_sort |
Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations |
dc.creator.none.fl_str_mv |
Flores, Fernando Gabriel Nallim, Liz Oller, Sergio Horacio Cristobal |
author |
Flores, Fernando Gabriel |
author_facet |
Flores, Fernando Gabriel Nallim, Liz Oller, Sergio Horacio Cristobal |
author_role |
author |
author2 |
Nallim, Liz Oller, Sergio Horacio Cristobal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Composite Laminate Large Displacements Solid-Shell Transverse Shear |
topic |
Composite Laminate Large Displacements Solid-Shell Transverse Shear |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used. Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina Fil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina Fil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; Argentina |
description |
This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63593 Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-52 0168-874X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63593 |
identifier_str_mv |
Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-52 0168-874X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.03.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168874X16304528 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613429445263360 |
score |
13.070432 |