Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations

Autores
Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina
Fil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; Argentina
Materia
Composite Laminate
Large Displacements
Solid-Shell
Transverse Shear
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63593

id CONICETDig_008c6a3c5733bff2d6fa08fd8efbc01e
oai_identifier_str oai:ri.conicet.gov.ar:11336/63593
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximationsFlores, Fernando GabrielNallim, LizOller, Sergio Horacio CristobalComposite LaminateLarge DisplacementsSolid-ShellTransverse Shearhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; ArgentinaFil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; ArgentinaElsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63593Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-520168-874XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.03.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168874X16304528info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:38Zoai:ri.conicet.gov.ar:11336/63593instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:39.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
title Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
spellingShingle Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
Flores, Fernando Gabriel
Composite Laminate
Large Displacements
Solid-Shell
Transverse Shear
title_short Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
title_full Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
title_fullStr Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
title_full_unstemmed Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
title_sort Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations
dc.creator.none.fl_str_mv Flores, Fernando Gabriel
Nallim, Liz
Oller, Sergio Horacio Cristobal
author Flores, Fernando Gabriel
author_facet Flores, Fernando Gabriel
Nallim, Liz
Oller, Sergio Horacio Cristobal
author_role author
author2 Nallim, Liz
Oller, Sergio Horacio Cristobal
author2_role author
author
dc.subject.none.fl_str_mv Composite Laminate
Large Displacements
Solid-Shell
Transverse Shear
topic Composite Laminate
Large Displacements
Solid-Shell
Transverse Shear
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina
Fil: Nallim, Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Oller, Sergio Horacio Cristobal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics En Enginyerie; Argentina
description This work presents a general formulation and implementation in solid-shell elements of the refined zigzag theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for use in the analysis, design and verification of structures made of composite materials, in which shear strains have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified right Cauchy-Green deformation tensor C¯ where five of its six components are linearly interpolated from values computed at the top and bottom surfaces of the element. The sixth component is computed at the element center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach is to have a simple and efficient finite element formulation to analyze composite laminates under large displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results obtained are in a very good agreement with the targets used.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63593
Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-52
0168-874X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63593
identifier_str_mv Flores, Fernando Gabriel; Nallim, Liz; Oller, Sergio Horacio Cristobal; Formulation of solid-shell finite elements with large displacements considering different transverse shear strains approximations; Elsevier Science; Finite Elements In Analysis And Design; 130; 8-2017; 39-52
0168-874X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.03.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168874X16304528
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613429445263360
score 13.070432