Including Disjunctions in Real-Time Optimization
- Autores
- Serralunga, Fernán José; Aguirre, Pio Antonio; Mussati, Miguel Ceferino
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Real-time optimization (RTO) is widely used in industry to improve the steady-state performance of a process using the available measurements, reacting to changing prices and demands scenarios and respecting operating, contractual, and environmental constraints. Traditionally, RTO has used nonlinear continuous formulations to model the process. Mixed- Integer formulations have not been used in RTO, because of the need of a fast solution (on the order of seconds or a few minutes), and because many discrete decisions, such as startups or shutdowns, are taken with less frequency in a scheduling layer. This work proposes the use of disjunctions in RTO models, listing a series of examples of discrete decisions (different to startups or shutdowns) that can be addressed by RTO. Two model adaptation approaches (the two-step approach and the modifier adaptation strategy) are revised and modified to make them suitable for RTO with discrete decisions. Some common techniques used in RTO (such as filtering the optimal inputs) are also analyzed and adapted for a formulation with disjunctions. The performance of RTO with disjunctions is shown by a case study in which a generic process is optimized. The results show that the performance of a process can be improved by RTO with discrete decisions. The system converges to the vicinity of the real plant optimum when constraints gradients are corrected, even under structural and parametric mismatch.
Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Real-Time Optimization Rto
Generalized Disjunctive Programming Gdp
Disjunctions
Modifier Adptation
Two-Step Adaptation Approach - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22460
Ver los metadatos del registro completo
id |
CONICETDig_005cb3f57a3034bc10bf4c670d237056 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22460 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Including Disjunctions in Real-Time OptimizationSerralunga, Fernán JoséAguirre, Pio AntonioMussati, Miguel CeferinoReal-Time Optimization RtoGeneralized Disjunctive Programming GdpDisjunctionsModifier AdptationTwo-Step Adaptation Approachhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Real-time optimization (RTO) is widely used in industry to improve the steady-state performance of a process using the available measurements, reacting to changing prices and demands scenarios and respecting operating, contractual, and environmental constraints. Traditionally, RTO has used nonlinear continuous formulations to model the process. Mixed- Integer formulations have not been used in RTO, because of the need of a fast solution (on the order of seconds or a few minutes), and because many discrete decisions, such as startups or shutdowns, are taken with less frequency in a scheduling layer. This work proposes the use of disjunctions in RTO models, listing a series of examples of discrete decisions (different to startups or shutdowns) that can be addressed by RTO. Two model adaptation approaches (the two-step approach and the modifier adaptation strategy) are revised and modified to make them suitable for RTO with discrete decisions. Some common techniques used in RTO (such as filtering the optimal inputs) are also analyzed and adapted for a formulation with disjunctions. The performance of RTO with disjunctions is shown by a case study in which a generic process is optimized. The results show that the performance of a process can be improved by RTO with discrete decisions. The system converges to the vicinity of the real plant optimum when constraints gradients are corrected, even under structural and parametric mismatch.Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaAmerican Chemical Society2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22460Serralunga, Fernán José; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Including Disjunctions in Real-Time Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 5-2014; 17200-172130888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie5004619info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie5004619info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:53Zoai:ri.conicet.gov.ar:11336/22460instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:54.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Including Disjunctions in Real-Time Optimization |
title |
Including Disjunctions in Real-Time Optimization |
spellingShingle |
Including Disjunctions in Real-Time Optimization Serralunga, Fernán José Real-Time Optimization Rto Generalized Disjunctive Programming Gdp Disjunctions Modifier Adptation Two-Step Adaptation Approach |
title_short |
Including Disjunctions in Real-Time Optimization |
title_full |
Including Disjunctions in Real-Time Optimization |
title_fullStr |
Including Disjunctions in Real-Time Optimization |
title_full_unstemmed |
Including Disjunctions in Real-Time Optimization |
title_sort |
Including Disjunctions in Real-Time Optimization |
dc.creator.none.fl_str_mv |
Serralunga, Fernán José Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author |
Serralunga, Fernán José |
author_facet |
Serralunga, Fernán José Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author_role |
author |
author2 |
Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Real-Time Optimization Rto Generalized Disjunctive Programming Gdp Disjunctions Modifier Adptation Two-Step Adaptation Approach |
topic |
Real-Time Optimization Rto Generalized Disjunctive Programming Gdp Disjunctions Modifier Adptation Two-Step Adaptation Approach |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Real-time optimization (RTO) is widely used in industry to improve the steady-state performance of a process using the available measurements, reacting to changing prices and demands scenarios and respecting operating, contractual, and environmental constraints. Traditionally, RTO has used nonlinear continuous formulations to model the process. Mixed- Integer formulations have not been used in RTO, because of the need of a fast solution (on the order of seconds or a few minutes), and because many discrete decisions, such as startups or shutdowns, are taken with less frequency in a scheduling layer. This work proposes the use of disjunctions in RTO models, listing a series of examples of discrete decisions (different to startups or shutdowns) that can be addressed by RTO. Two model adaptation approaches (the two-step approach and the modifier adaptation strategy) are revised and modified to make them suitable for RTO with discrete decisions. Some common techniques used in RTO (such as filtering the optimal inputs) are also analyzed and adapted for a formulation with disjunctions. The performance of RTO with disjunctions is shown by a case study in which a generic process is optimized. The results show that the performance of a process can be improved by RTO with discrete decisions. The system converges to the vicinity of the real plant optimum when constraints gradients are corrected, even under structural and parametric mismatch. Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Real-time optimization (RTO) is widely used in industry to improve the steady-state performance of a process using the available measurements, reacting to changing prices and demands scenarios and respecting operating, contractual, and environmental constraints. Traditionally, RTO has used nonlinear continuous formulations to model the process. Mixed- Integer formulations have not been used in RTO, because of the need of a fast solution (on the order of seconds or a few minutes), and because many discrete decisions, such as startups or shutdowns, are taken with less frequency in a scheduling layer. This work proposes the use of disjunctions in RTO models, listing a series of examples of discrete decisions (different to startups or shutdowns) that can be addressed by RTO. Two model adaptation approaches (the two-step approach and the modifier adaptation strategy) are revised and modified to make them suitable for RTO with discrete decisions. Some common techniques used in RTO (such as filtering the optimal inputs) are also analyzed and adapted for a formulation with disjunctions. The performance of RTO with disjunctions is shown by a case study in which a generic process is optimized. The results show that the performance of a process can be improved by RTO with discrete decisions. The system converges to the vicinity of the real plant optimum when constraints gradients are corrected, even under structural and parametric mismatch. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22460 Serralunga, Fernán José; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Including Disjunctions in Real-Time Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 5-2014; 17200-17213 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22460 |
identifier_str_mv |
Serralunga, Fernán José; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Including Disjunctions in Real-Time Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 5-2014; 17200-17213 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie5004619 info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie5004619 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268889346473984 |
score |
13.13397 |