Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions

Autores
Jaime, Marcelo; Corvalán Moya, Carolina del Huerto; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; Wartenbe, Mark; Rosa, Priscila F.S.; Betts, Jonathan B.; Rodriguez, George; Crooker, Scott A.; Daou, Ramzy
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (DL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.
Fil: Jaime, Marcelo. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Corvalán Moya, Carolina del Huerto. Universidad Nacional de Tres de Febrero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina
Fil: Weickert, Franziska. Florida State University; Estados Unidos
Fil: Zapf, Vivien. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Balakirev, Fedor F.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Wartenbe, Mark. Florida State University; Estados Unidos
Fil: Rosa, Priscila F.S.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Betts, Jonathan B.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Rodriguez, George. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Crooker, Scott A.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Daou, Ramzy. Universite de Caen Basse Normandie; Francia
Materia
FBG
LARGE PULSED MAGNETIC FIELDS
MAGNETOSTRICTION
PHASE TRANSITIONS
QUANTUM OSCILLATIONS
SINGLE-MODE FIBER BRAGG GRATINGS
SUPERCONDUCTING MAGNETS
THERMAL EXPANSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72136

id CONICETDig_0013bda1a699330086f3c2e857cde173
oai_identifier_str oai:ri.conicet.gov.ar:11336/72136
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditionsJaime, MarceloCorvalán Moya, Carolina del HuertoWeickert, FranziskaZapf, VivienBalakirev, Fedor F.Wartenbe, MarkRosa, Priscila F.S.Betts, Jonathan B.Rodriguez, GeorgeCrooker, Scott A.Daou, RamzyFBGLARGE PULSED MAGNETIC FIELDSMAGNETOSTRICTIONPHASE TRANSITIONSQUANTUM OSCILLATIONSSINGLE-MODE FIBER BRAGG GRATINGSSUPERCONDUCTING MAGNETSTHERMAL EXPANSIONIn this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (DL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.Fil: Jaime, Marcelo. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Corvalán Moya, Carolina del Huerto. Universidad Nacional de Tres de Febrero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); ArgentinaFil: Weickert, Franziska. Florida State University; Estados UnidosFil: Zapf, Vivien. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Balakirev, Fedor F.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Wartenbe, Mark. Florida State University; Estados UnidosFil: Rosa, Priscila F.S.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Betts, Jonathan B.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Rodriguez, George. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Crooker, Scott A.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Daou, Ramzy. Universite de Caen Basse Normandie; FranciaMolecular Diversity Preservation International2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72136Jaime, Marcelo; Corvalán Moya, Carolina del Huerto; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; et al.; Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions; Molecular Diversity Preservation International; Sensors; 17; 11; 11-2017; 1-211424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/s17112572info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/17/11/2572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:06Zoai:ri.conicet.gov.ar:11336/72136instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:06.518CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
title Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
spellingShingle Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
Jaime, Marcelo
FBG
LARGE PULSED MAGNETIC FIELDS
MAGNETOSTRICTION
PHASE TRANSITIONS
QUANTUM OSCILLATIONS
SINGLE-MODE FIBER BRAGG GRATINGS
SUPERCONDUCTING MAGNETS
THERMAL EXPANSION
title_short Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
title_full Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
title_fullStr Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
title_full_unstemmed Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
title_sort Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions
dc.creator.none.fl_str_mv Jaime, Marcelo
Corvalán Moya, Carolina del Huerto
Weickert, Franziska
Zapf, Vivien
Balakirev, Fedor F.
Wartenbe, Mark
Rosa, Priscila F.S.
Betts, Jonathan B.
Rodriguez, George
Crooker, Scott A.
Daou, Ramzy
author Jaime, Marcelo
author_facet Jaime, Marcelo
Corvalán Moya, Carolina del Huerto
Weickert, Franziska
Zapf, Vivien
Balakirev, Fedor F.
Wartenbe, Mark
Rosa, Priscila F.S.
Betts, Jonathan B.
Rodriguez, George
Crooker, Scott A.
Daou, Ramzy
author_role author
author2 Corvalán Moya, Carolina del Huerto
Weickert, Franziska
Zapf, Vivien
Balakirev, Fedor F.
Wartenbe, Mark
Rosa, Priscila F.S.
Betts, Jonathan B.
Rodriguez, George
Crooker, Scott A.
Daou, Ramzy
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv FBG
LARGE PULSED MAGNETIC FIELDS
MAGNETOSTRICTION
PHASE TRANSITIONS
QUANTUM OSCILLATIONS
SINGLE-MODE FIBER BRAGG GRATINGS
SUPERCONDUCTING MAGNETS
THERMAL EXPANSION
topic FBG
LARGE PULSED MAGNETIC FIELDS
MAGNETOSTRICTION
PHASE TRANSITIONS
QUANTUM OSCILLATIONS
SINGLE-MODE FIBER BRAGG GRATINGS
SUPERCONDUCTING MAGNETS
THERMAL EXPANSION
dc.description.none.fl_txt_mv In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (DL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.
Fil: Jaime, Marcelo. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Corvalán Moya, Carolina del Huerto. Universidad Nacional de Tres de Febrero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina
Fil: Weickert, Franziska. Florida State University; Estados Unidos
Fil: Zapf, Vivien. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Balakirev, Fedor F.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Wartenbe, Mark. Florida State University; Estados Unidos
Fil: Rosa, Priscila F.S.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Betts, Jonathan B.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Rodriguez, George. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Crooker, Scott A.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Daou, Ramzy. Universite de Caen Basse Normandie; Francia
description In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (DL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72136
Jaime, Marcelo; Corvalán Moya, Carolina del Huerto; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; et al.; Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions; Molecular Diversity Preservation International; Sensors; 17; 11; 11-2017; 1-21
1424-8220
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72136
identifier_str_mv Jaime, Marcelo; Corvalán Moya, Carolina del Huerto; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; et al.; Fiber bragg grating dilatometry in extreme magnetic field and cryogenic conditions; Molecular Diversity Preservation International; Sensors; 17; 11; 11-2017; 1-21
1424-8220
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/s17112572
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/17/11/2572
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614273191378944
score 13.070432