Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos

Autores
Urribarri, Dana
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Silvia M. Castro
Descripción
El objetivo de una visualización es obtener una representación del conjunto de datos que ayude al usuario en la correcta interpretación de los mismos y así lograr un acertado análisis de éstos. Dado el constante crecimiento de los conjuntos de datos en diferentes y variados campos de la información, la tarea de elegir la técnica más adecuada para visualizar convenientemente los datos no es sencilla. Además, el resultado del proceso de visualización depende de todas las decisiones que se hayan tomando a lo largo de dicho proceso: un usuario inexperto es propenso a tomar decisiones equivocadas afectando negativamente la visualización obtenida y, a la larga, frustrando su experiencia con la visualización. Si bien a la hora de visualizar conjuntos de datos pequeños no hay grandes desafíos, la situación cambia al intentar visualizar grandes conjuntos de datos: una mala decisión en cualquier punto del proceso de visualización y el resultado obtenido puede no ser satisfactorio. Una alternativa para solucionar este problema es guiar al usuario en la toma de decisiones a lo largo del proceso. Sin embargo, esta tarea no es sencilla: implica la existencia de herramientas que permitan predecir qué decisión es “más conveniente” tomar. Una forma de elegir la decisión más conveniente es basarse en métricas sobre los datos que describan aspectos claves de la técnica y permitan predecir el resultado final sin necesidad de aplicar la técnica sobre los datos.
The goal of visualization is to achieve a representation of a dataset that helps the user to interpret them correctly and achieve a proper analysis. Given the constant growing of datasets in deferent application areas, the task of choosing the more suitable technique to visualize a dataset is not easy. Besides, the result of the visualization process depends on every decision made along it: an unskilled user is prone to make incorrect decisions which affect negatively the final visualization and, eventually, frustrate the user’s experience with the visualization. Visualizing small datasets is not a big challenge, but this changes when trying to visualize big datasets: a wrong decision at any point in the visualization process and the result might not be satisfactory. A solution to this problem is to guide the user while making decisions along the process. Nevertheless, this task is not easy: it implies the existence of tools which allow the prediction of what decision if “more advisable” to make. A way to choose the more advisable decision is using metrics over the data which describe key aspects of the techniques and allow the prediction of the final result without applying the technique to the dataset.

Materia
Ciencias de la Computación e Información
Visualización de la información
Técnicas de predicción
Escalabilidad visual
Técnicas de visualización
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/7939

id CICBA_fa6f84d06872217b00d7336001b014c3
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/7939
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datosUrribarri, DanaCiencias de la Computación e InformaciónVisualización de la informaciónTécnicas de predicciónEscalabilidad visualTécnicas de visualizaciónEl objetivo de una visualización es obtener una representación del conjunto de datos que ayude al usuario en la correcta interpretación de los mismos y así lograr un acertado análisis de éstos. Dado el constante crecimiento de los conjuntos de datos en diferentes y variados campos de la información, la tarea de elegir la técnica más adecuada para visualizar convenientemente los datos no es sencilla. Además, el resultado del proceso de visualización depende de todas las decisiones que se hayan tomando a lo largo de dicho proceso: un usuario inexperto es propenso a tomar decisiones equivocadas afectando negativamente la visualización obtenida y, a la larga, frustrando su experiencia con la visualización. Si bien a la hora de visualizar conjuntos de datos pequeños no hay grandes desafíos, la situación cambia al intentar visualizar grandes conjuntos de datos: una mala decisión en cualquier punto del proceso de visualización y el resultado obtenido puede no ser satisfactorio. Una alternativa para solucionar este problema es guiar al usuario en la toma de decisiones a lo largo del proceso. Sin embargo, esta tarea no es sencilla: implica la existencia de herramientas que permitan predecir qué decisión es “más conveniente” tomar. Una forma de elegir la decisión más conveniente es basarse en métricas sobre los datos que describan aspectos claves de la técnica y permitan predecir el resultado final sin necesidad de aplicar la técnica sobre los datos.The goal of visualization is to achieve a representation of a dataset that helps the user to interpret them correctly and achieve a proper analysis. Given the constant growing of datasets in deferent application areas, the task of choosing the more suitable technique to visualize a dataset is not easy. Besides, the result of the visualization process depends on every decision made along it: an unskilled user is prone to make incorrect decisions which affect negatively the final visualization and, eventually, frustrate the user’s experience with the visualization. Visualizing small datasets is not a big challenge, but this changes when trying to visualize big datasets: a wrong decision at any point in the visualization process and the result might not be satisfactory. A solution to this problem is to guide the user while making decisions along the process. Nevertheless, this task is not easy: it implies the existence of tools which allow the prediction of what decision if “more advisable” to make. A way to choose the more advisable decision is using metrics over the data which describe key aspects of the techniques and allow the prediction of the final result without applying the technique to the dataset.Silvia M. Castro2014-10info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/7939spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:51Zoai:digital.cic.gba.gob.ar:11746/7939Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:51.679CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
title Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
spellingShingle Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
Urribarri, Dana
Ciencias de la Computación e Información
Visualización de la información
Técnicas de predicción
Escalabilidad visual
Técnicas de visualización
title_short Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
title_full Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
title_fullStr Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
title_full_unstemmed Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
title_sort Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos
dc.creator.none.fl_str_mv Urribarri, Dana
author Urribarri, Dana
author_facet Urribarri, Dana
author_role author
dc.contributor.none.fl_str_mv Silvia M. Castro
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Visualización de la información
Técnicas de predicción
Escalabilidad visual
Técnicas de visualización
topic Ciencias de la Computación e Información
Visualización de la información
Técnicas de predicción
Escalabilidad visual
Técnicas de visualización
dc.description.none.fl_txt_mv El objetivo de una visualización es obtener una representación del conjunto de datos que ayude al usuario en la correcta interpretación de los mismos y así lograr un acertado análisis de éstos. Dado el constante crecimiento de los conjuntos de datos en diferentes y variados campos de la información, la tarea de elegir la técnica más adecuada para visualizar convenientemente los datos no es sencilla. Además, el resultado del proceso de visualización depende de todas las decisiones que se hayan tomando a lo largo de dicho proceso: un usuario inexperto es propenso a tomar decisiones equivocadas afectando negativamente la visualización obtenida y, a la larga, frustrando su experiencia con la visualización. Si bien a la hora de visualizar conjuntos de datos pequeños no hay grandes desafíos, la situación cambia al intentar visualizar grandes conjuntos de datos: una mala decisión en cualquier punto del proceso de visualización y el resultado obtenido puede no ser satisfactorio. Una alternativa para solucionar este problema es guiar al usuario en la toma de decisiones a lo largo del proceso. Sin embargo, esta tarea no es sencilla: implica la existencia de herramientas que permitan predecir qué decisión es “más conveniente” tomar. Una forma de elegir la decisión más conveniente es basarse en métricas sobre los datos que describan aspectos claves de la técnica y permitan predecir el resultado final sin necesidad de aplicar la técnica sobre los datos.
The goal of visualization is to achieve a representation of a dataset that helps the user to interpret them correctly and achieve a proper analysis. Given the constant growing of datasets in deferent application areas, the task of choosing the more suitable technique to visualize a dataset is not easy. Besides, the result of the visualization process depends on every decision made along it: an unskilled user is prone to make incorrect decisions which affect negatively the final visualization and, eventually, frustrate the user’s experience with the visualization. Visualizing small datasets is not a big challenge, but this changes when trying to visualize big datasets: a wrong decision at any point in the visualization process and the result might not be satisfactory. A solution to this problem is to guide the user while making decisions along the process. Nevertheless, this task is not easy: it implies the existence of tools which allow the prediction of what decision if “more advisable” to make. A way to choose the more advisable decision is using metrics over the data which describe key aspects of the techniques and allow the prediction of the final result without applying the technique to the dataset.

description El objetivo de una visualización es obtener una representación del conjunto de datos que ayude al usuario en la correcta interpretación de los mismos y así lograr un acertado análisis de éstos. Dado el constante crecimiento de los conjuntos de datos en diferentes y variados campos de la información, la tarea de elegir la técnica más adecuada para visualizar convenientemente los datos no es sencilla. Además, el resultado del proceso de visualización depende de todas las decisiones que se hayan tomando a lo largo de dicho proceso: un usuario inexperto es propenso a tomar decisiones equivocadas afectando negativamente la visualización obtenida y, a la larga, frustrando su experiencia con la visualización. Si bien a la hora de visualizar conjuntos de datos pequeños no hay grandes desafíos, la situación cambia al intentar visualizar grandes conjuntos de datos: una mala decisión en cualquier punto del proceso de visualización y el resultado obtenido puede no ser satisfactorio. Una alternativa para solucionar este problema es guiar al usuario en la toma de decisiones a lo largo del proceso. Sin embargo, esta tarea no es sencilla: implica la existencia de herramientas que permitan predecir qué decisión es “más conveniente” tomar. Una forma de elegir la decisión más conveniente es basarse en métricas sobre los datos que describan aspectos claves de la técnica y permitan predecir el resultado final sin necesidad de aplicar la técnica sobre los datos.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/7939
url https://digital.cic.gba.gob.ar/handle/11746/7939
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618581394849792
score 13.070432