Common Bean germplasm molecular analysis: a biotechnological approach for breeding

Autores
Galván, M.; Stenglein, Sebastián; Balatti, Pedro Alberto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
Argentina, which is a major producer of common bean (Phaseolus vulgaris L.), represents the southern most limit of the Andean diversification center of the species. The diverse environmental conditions of these places and human selection favored the development of a great variability of wild beans and landraces, which is endangered due to the destruction of habitats by forest exploitation and agriculture. Information on the variability of these resources is essential to set conservation strategies and design breeding programs aimed at enlarging the genetic base of commercial beans. This work is an overview of the marker-based studies on landraces and wild bean genetic diversity, with special emphasis on Argentinean beans, as a first step for the optimal exploitation of the naturally available bean genetic resources, to generate new traits and improve crop performance. The identification of diversity and hybridization between populations is enhanced by the application of the new tools and the information generated by bean genomic research. Gene flow, which appears to occur fairly frequently in bean, has to be studied in more detail in this region in order to facilitate the transfer of useful alleles from the unexploited germplasm to improved lines, broadening the genetic diversity available for breeding. Some resistance gene analogs (RGAs) have been described within the Andean gene pool and only a few have been functionally characterized or linked to a phenotype. Therefore, a strategy for the exploitation of bean germplasm variability based on the detection of RGAs is also mentioned, though more work should be devoted at identifying these sequences in Andean landraces and wild beans.
Materia
Agronomía, reproducción y protección de plantas
genetic variability
molecular markers
Phaseolus vulgaris
domestication
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/7134

id CICBA_e0e144877f1b6a3ba22379dd1ff51a6d
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/7134
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Common Bean germplasm molecular analysis: a biotechnological approach for breedingGalván, M.Stenglein, SebastiánBalatti, Pedro AlbertoAgronomía, reproducción y protección de plantasgenetic variabilitymolecular markersPhaseolus vulgarisdomesticationArgentina, which is a major producer of common bean (Phaseolus vulgaris L.), represents the southern most limit of the Andean diversification center of the species. The diverse environmental conditions of these places and human selection favored the development of a great variability of wild beans and landraces, which is endangered due to the destruction of habitats by forest exploitation and agriculture. Information on the variability of these resources is essential to set conservation strategies and design breeding programs aimed at enlarging the genetic base of commercial beans. This work is an overview of the marker-based studies on landraces and wild bean genetic diversity, with special emphasis on Argentinean beans, as a first step for the optimal exploitation of the naturally available bean genetic resources, to generate new traits and improve crop performance. The identification of diversity and hybridization between populations is enhanced by the application of the new tools and the information generated by bean genomic research. Gene flow, which appears to occur fairly frequently in bean, has to be studied in more detail in this region in order to facilitate the transfer of useful alleles from the unexploited germplasm to improved lines, broadening the genetic diversity available for breeding. Some resistance gene analogs (RGAs) have been described within the Andean gene pool and only a few have been functionally characterized or linked to a phenotype. Therefore, a strategy for the exploitation of bean germplasm variability based on the detection of RGAs is also mentioned, though more work should be devoted at identifying these sequences in Andean landraces and wild beans.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/7134enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:56Zoai:digital.cic.gba.gob.ar:11746/7134Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:56.618CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Common Bean germplasm molecular analysis: a biotechnological approach for breeding
title Common Bean germplasm molecular analysis: a biotechnological approach for breeding
spellingShingle Common Bean germplasm molecular analysis: a biotechnological approach for breeding
Galván, M.
Agronomía, reproducción y protección de plantas
genetic variability
molecular markers
Phaseolus vulgaris
domestication
title_short Common Bean germplasm molecular analysis: a biotechnological approach for breeding
title_full Common Bean germplasm molecular analysis: a biotechnological approach for breeding
title_fullStr Common Bean germplasm molecular analysis: a biotechnological approach for breeding
title_full_unstemmed Common Bean germplasm molecular analysis: a biotechnological approach for breeding
title_sort Common Bean germplasm molecular analysis: a biotechnological approach for breeding
dc.creator.none.fl_str_mv Galván, M.
Stenglein, Sebastián
Balatti, Pedro Alberto
author Galván, M.
author_facet Galván, M.
Stenglein, Sebastián
Balatti, Pedro Alberto
author_role author
author2 Stenglein, Sebastián
Balatti, Pedro Alberto
author2_role author
author
dc.subject.none.fl_str_mv Agronomía, reproducción y protección de plantas
genetic variability
molecular markers
Phaseolus vulgaris
domestication
topic Agronomía, reproducción y protección de plantas
genetic variability
molecular markers
Phaseolus vulgaris
domestication
dc.description.none.fl_txt_mv Argentina, which is a major producer of common bean (Phaseolus vulgaris L.), represents the southern most limit of the Andean diversification center of the species. The diverse environmental conditions of these places and human selection favored the development of a great variability of wild beans and landraces, which is endangered due to the destruction of habitats by forest exploitation and agriculture. Information on the variability of these resources is essential to set conservation strategies and design breeding programs aimed at enlarging the genetic base of commercial beans. This work is an overview of the marker-based studies on landraces and wild bean genetic diversity, with special emphasis on Argentinean beans, as a first step for the optimal exploitation of the naturally available bean genetic resources, to generate new traits and improve crop performance. The identification of diversity and hybridization between populations is enhanced by the application of the new tools and the information generated by bean genomic research. Gene flow, which appears to occur fairly frequently in bean, has to be studied in more detail in this region in order to facilitate the transfer of useful alleles from the unexploited germplasm to improved lines, broadening the genetic diversity available for breeding. Some resistance gene analogs (RGAs) have been described within the Andean gene pool and only a few have been functionally characterized or linked to a phenotype. Therefore, a strategy for the exploitation of bean germplasm variability based on the detection of RGAs is also mentioned, though more work should be devoted at identifying these sequences in Andean landraces and wild beans.
description Argentina, which is a major producer of common bean (Phaseolus vulgaris L.), represents the southern most limit of the Andean diversification center of the species. The diverse environmental conditions of these places and human selection favored the development of a great variability of wild beans and landraces, which is endangered due to the destruction of habitats by forest exploitation and agriculture. Information on the variability of these resources is essential to set conservation strategies and design breeding programs aimed at enlarging the genetic base of commercial beans. This work is an overview of the marker-based studies on landraces and wild bean genetic diversity, with special emphasis on Argentinean beans, as a first step for the optimal exploitation of the naturally available bean genetic resources, to generate new traits and improve crop performance. The identification of diversity and hybridization between populations is enhanced by the application of the new tools and the information generated by bean genomic research. Gene flow, which appears to occur fairly frequently in bean, has to be studied in more detail in this region in order to facilitate the transfer of useful alleles from the unexploited germplasm to improved lines, broadening the genetic diversity available for breeding. Some resistance gene analogs (RGAs) have been described within the Andean gene pool and only a few have been functionally characterized or linked to a phenotype. Therefore, a strategy for the exploitation of bean germplasm variability based on the detection of RGAs is also mentioned, though more work should be devoted at identifying these sequences in Andean landraces and wild beans.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/7134
url https://digital.cic.gba.gob.ar/handle/11746/7134
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340440669421568
score 12.623145