Oligarchic planetesimal accretion and giant planet formation II

Autores
Fortier, Andrea; Brunini, Adrián; Benvenuto, Omar Gustavo
Año de publicación
2009
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión enviada
Descripción
Aims. The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. \nMethods. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. \nResults. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. \nConclusions. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
Materia
Ciencias Astronómicas
planetología
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/3868

id CICBA_dc3be7b6e39d73c3e4bd8d26c89680c6
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/3868
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Oligarchic planetesimal accretion and giant planet formation IIFortier, AndreaBrunini, AdriánBenvenuto, Omar GustavoCiencias AstronómicasplanetologíaAims. The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. \nMethods. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. \nResults. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. \nConclusions. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.2009-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3868spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:00Zoai:digital.cic.gba.gob.ar:11746/3868Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:01.24CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Oligarchic planetesimal accretion and giant planet formation II
title Oligarchic planetesimal accretion and giant planet formation II
spellingShingle Oligarchic planetesimal accretion and giant planet formation II
Fortier, Andrea
Ciencias Astronómicas
planetología
title_short Oligarchic planetesimal accretion and giant planet formation II
title_full Oligarchic planetesimal accretion and giant planet formation II
title_fullStr Oligarchic planetesimal accretion and giant planet formation II
title_full_unstemmed Oligarchic planetesimal accretion and giant planet formation II
title_sort Oligarchic planetesimal accretion and giant planet formation II
dc.creator.none.fl_str_mv Fortier, Andrea
Brunini, Adrián
Benvenuto, Omar Gustavo
author Fortier, Andrea
author_facet Fortier, Andrea
Brunini, Adrián
Benvenuto, Omar Gustavo
author_role author
author2 Brunini, Adrián
Benvenuto, Omar Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
planetología
topic Ciencias Astronómicas
planetología
dc.description.none.fl_txt_mv Aims. The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. \nMethods. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. \nResults. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. \nConclusions. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
description Aims. The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. \nMethods. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. \nResults. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. \nConclusions. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/3868
url https://digital.cic.gba.gob.ar/handle/11746/3868
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618593482833920
score 13.070432