Towards recovering architectural information from images of architectural diagrams
- Autores
- Maggiori, Emmanuel; Gervasoni, Luciano; Antúnez, Matías; Rago, Alejandro; Díaz Pace, J. Andrés
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The architecture of a software system is often described with diagrams embedded in the documentation. However, these diagrams are normally stored and shared as images, losing track of model-level architectural information and refraining software engineers from working on the architectural model later on. In this context, tools able to extract architectural information from images can be of great help. In this article, we present a framework called IMEAV for processing architectural diagrams (based on speci c viewtypes) and recovering information from them. We have instantiated our framework to analyze \\module views and evaluated this prototype with an image dataset. Results have been encouraging, showing a good accuracy for recognizing modules, relations and textual features.
XV Simposio Argentino de Ingeniería de Software - Materia
-
Ciencias de la Computación
framework
IMEAV
software architecture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3410
Ver los metadatos del registro completo
id |
CICBA_b7df04bf2ff116068d2464d69f022865 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3410 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Towards recovering architectural information from images of architectural diagramsMaggiori, EmmanuelGervasoni, LucianoAntúnez, MatíasRago, AlejandroDíaz Pace, J. AndrésCiencias de la ComputaciónframeworkIMEAVsoftware architectureThe architecture of a software system is often described with diagrams embedded in the documentation. However, these diagrams are normally stored and shared as images, losing track of model-level architectural information and refraining software engineers from working on the architectural model later on. In this context, tools able to extract architectural information from images can be of great help. In this article, we present a framework called IMEAV for processing architectural diagrams (based on speci c viewtypes) and recovering information from them. We have instantiated our framework to analyze \\module views and evaluated this prototype with an image dataset. Results have been encouraging, showing a good accuracy for recognizing modules, relations and textual features.XV Simposio Argentino de Ingeniería de Software2014-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3410enginfo:eu-repo/semantics/altIdentifier/issn/1850-2792info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:54Zoai:digital.cic.gba.gob.ar:11746/3410Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:55.089CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Towards recovering architectural information from images of architectural diagrams |
title |
Towards recovering architectural information from images of architectural diagrams |
spellingShingle |
Towards recovering architectural information from images of architectural diagrams Maggiori, Emmanuel Ciencias de la Computación framework IMEAV software architecture |
title_short |
Towards recovering architectural information from images of architectural diagrams |
title_full |
Towards recovering architectural information from images of architectural diagrams |
title_fullStr |
Towards recovering architectural information from images of architectural diagrams |
title_full_unstemmed |
Towards recovering architectural information from images of architectural diagrams |
title_sort |
Towards recovering architectural information from images of architectural diagrams |
dc.creator.none.fl_str_mv |
Maggiori, Emmanuel Gervasoni, Luciano Antúnez, Matías Rago, Alejandro Díaz Pace, J. Andrés |
author |
Maggiori, Emmanuel |
author_facet |
Maggiori, Emmanuel Gervasoni, Luciano Antúnez, Matías Rago, Alejandro Díaz Pace, J. Andrés |
author_role |
author |
author2 |
Gervasoni, Luciano Antúnez, Matías Rago, Alejandro Díaz Pace, J. Andrés |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación framework IMEAV software architecture |
topic |
Ciencias de la Computación framework IMEAV software architecture |
dc.description.none.fl_txt_mv |
The architecture of a software system is often described with diagrams embedded in the documentation. However, these diagrams are normally stored and shared as images, losing track of model-level architectural information and refraining software engineers from working on the architectural model later on. In this context, tools able to extract architectural information from images can be of great help. In this article, we present a framework called IMEAV for processing architectural diagrams (based on speci c viewtypes) and recovering information from them. We have instantiated our framework to analyze \\module views and evaluated this prototype with an image dataset. Results have been encouraging, showing a good accuracy for recognizing modules, relations and textual features. XV Simposio Argentino de Ingeniería de Software |
description |
The architecture of a software system is often described with diagrams embedded in the documentation. However, these diagrams are normally stored and shared as images, losing track of model-level architectural information and refraining software engineers from working on the architectural model later on. In this context, tools able to extract architectural information from images can be of great help. In this article, we present a framework called IMEAV for processing architectural diagrams (based on speci c viewtypes) and recovering information from them. We have instantiated our framework to analyze \\module views and evaluated this prototype with an image dataset. Results have been encouraging, showing a good accuracy for recognizing modules, relations and textual features. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3410 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3410 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1850-2792 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842340439456219136 |
score |
12.623145 |