Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
- Autores
- Violini, María Agustina; Hernández, María Florencia; Gauna, M.; Suárez, Gustavo; Conconi, María Susana; Rendtorff Birrer, Nicolás Maximiliano
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.
Versión en prensa. - Materia
-
Ingeniería de los Materiales
aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/8454
Ver los metadatos del registro completo
id |
CICBA_b44b68cf28b68cd42e5f09b2f9b60b42 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/8454 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materialsViolini, María AgustinaHernández, María FlorenciaGauna, M.Suárez, GustavoConconi, María SusanaRendtorff Birrer, Nicolás MaximilianoIngeniería de los Materialesaluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, propertiesAluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.Versión en prensa.2018-08-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8454enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ceramint.2018.08.208info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:11Zoai:digital.cic.gba.gob.ar:11746/8454Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:12.195CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
title |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
spellingShingle |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials Violini, María Agustina Ingeniería de los Materiales aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties |
title_short |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
title_full |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
title_fullStr |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
title_full_unstemmed |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
title_sort |
Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials |
dc.creator.none.fl_str_mv |
Violini, María Agustina Hernández, María Florencia Gauna, M. Suárez, Gustavo Conconi, María Susana Rendtorff Birrer, Nicolás Maximiliano |
author |
Violini, María Agustina |
author_facet |
Violini, María Agustina Hernández, María Florencia Gauna, M. Suárez, Gustavo Conconi, María Susana Rendtorff Birrer, Nicolás Maximiliano |
author_role |
author |
author2 |
Hernández, María Florencia Gauna, M. Suárez, Gustavo Conconi, María Susana Rendtorff Birrer, Nicolás Maximiliano |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería de los Materiales aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties |
topic |
Ingeniería de los Materiales aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties |
dc.description.none.fl_txt_mv |
Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion. Versión en prensa. |
description |
Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/8454 |
url |
https://digital.cic.gba.gob.ar/handle/11746/8454 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ceramint.2018.08.208 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618607340814336 |
score |
13.070432 |