Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials

Autores
Violini, María Agustina; Hernández, María Florencia; Gauna, M.; Suárez, Gustavo; Conconi, María Susana; Rendtorff Birrer, Nicolás Maximiliano
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.
Versión en prensa.
Materia
Ingeniería de los Materiales
aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/8454

id CICBA_b44b68cf28b68cd42e5f09b2f9b60b42
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/8454
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materialsViolini, María AgustinaHernández, María FlorenciaGauna, M.Suárez, GustavoConconi, María SusanaRendtorff Birrer, Nicolás MaximilianoIngeniería de los Materialesaluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, propertiesAluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.Versión en prensa.2018-08-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8454enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ceramint.2018.08.208info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:11Zoai:digital.cic.gba.gob.ar:11746/8454Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:12.195CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
title Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
spellingShingle Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
Violini, María Agustina
Ingeniería de los Materiales
aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties
title_short Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
title_full Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
title_fullStr Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
title_full_unstemmed Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
title_sort Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5 − 3Al2O3.2SiO2 - ZrTiO4 composite materials
dc.creator.none.fl_str_mv Violini, María Agustina
Hernández, María Florencia
Gauna, M.
Suárez, Gustavo
Conconi, María Susana
Rendtorff Birrer, Nicolás Maximiliano
author Violini, María Agustina
author_facet Violini, María Agustina
Hernández, María Florencia
Gauna, M.
Suárez, Gustavo
Conconi, María Susana
Rendtorff Birrer, Nicolás Maximiliano
author_role author
author2 Hernández, María Florencia
Gauna, M.
Suárez, Gustavo
Conconi, María Susana
Rendtorff Birrer, Nicolás Maximiliano
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ingeniería de los Materiales
aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties
topic Ingeniería de los Materiales
aluminum titanate, structural ceramics, composite ceramics, low thermal expansion ceramics, processing, properties
dc.description.none.fl_txt_mv Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.
Versión en prensa.
description Aluminum titanate (Al2TiO5) materials and aluminum titanate - mullite- zirconium titanate (Al2TiO5 - 3Al2O3.2SiO2 - ZrTiO4) composite materials were successfully processed from fine commercial powders and characterized. This was achieved by zircon (ZrSiO4) addition to stoichiometric alumina - titania mixtures. Zircon addition was the principal processing variable explored. This additive stabilizes the unstable aluminum titanate phase, enhances the sintering process, restricts microcrack development and improves the mechanical properties of the bulk material, but has a slight detrimental effect on its thermal expansion behavior (αapp from −1.5 to 2.5×10−6 °C−1 in the RT-800 °C range). With a clear microstructure configuration change, all the technological properties are directly (linearly) correlated with zircon proportion in the initial formulation in the range between 5 and 30 wt%. Developed phases were established, relatively dense ceramics were produced, and complex microstructures with multiphasic interlocked grains were identified. Also, an interconnected microcrack matrix was observed with no material integrity loss which explained the low or even negative thermal expansion behaviors observed in the developed materials. This, together with the mechanical behavior detected, encourages structural applications with high thermomechanical solicitations. The triplex composite material presented an excellent thermomechanical behavior and low porosity, 48 MPa flexural strength, low stiffness and high sintering grade with low thermal expansion.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/8454
url https://digital.cic.gba.gob.ar/handle/11746/8454
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ceramint.2018.08.208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618607340814336
score 13.070432