Entanglement of two harmonic modes coupled by angular momentum
- Autores
- Rebón, L.; Rossignoli, Raúl Dante
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- We examine the entanglement induced by an angular momentum coupling between two harmonic systems. The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic potential, or equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and thermal entanglement, obtaining analytic expressions for the entanglement entropy and negativity through the gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature, entanglement is non-zero just within a finite field or frequency window and no longer diverges. Moreover, the limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the gaussian quantum discord and its difference with the negativity is also discussed.
- Materia
-
Ciencias Físicas
Entanglement and quantum nonlocality
Boson systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/4214
Ver los metadatos del registro completo
id |
CICBA_989aa22b833935c3e3e22aeffd4751b5 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/4214 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Entanglement of two harmonic modes coupled by angular momentumRebón, L.Rossignoli, Raúl DanteCiencias FísicasEntanglement and quantum nonlocalityBoson systemsWe examine the entanglement induced by an angular momentum coupling between two harmonic systems. The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic potential, or equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and thermal entanglement, obtaining analytic expressions for the entanglement entropy and negativity through the gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature, entanglement is non-zero just within a finite field or frequency window and no longer diverges. Moreover, the limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the gaussian quantum discord and its difference with the negativity is also discussed.APS physics2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4214enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.84.052320info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:07Zoai:digital.cic.gba.gob.ar:11746/4214Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:07.832CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Entanglement of two harmonic modes coupled by angular momentum |
title |
Entanglement of two harmonic modes coupled by angular momentum |
spellingShingle |
Entanglement of two harmonic modes coupled by angular momentum Rebón, L. Ciencias Físicas Entanglement and quantum nonlocality Boson systems |
title_short |
Entanglement of two harmonic modes coupled by angular momentum |
title_full |
Entanglement of two harmonic modes coupled by angular momentum |
title_fullStr |
Entanglement of two harmonic modes coupled by angular momentum |
title_full_unstemmed |
Entanglement of two harmonic modes coupled by angular momentum |
title_sort |
Entanglement of two harmonic modes coupled by angular momentum |
dc.creator.none.fl_str_mv |
Rebón, L. Rossignoli, Raúl Dante |
author |
Rebón, L. |
author_facet |
Rebón, L. Rossignoli, Raúl Dante |
author_role |
author |
author2 |
Rossignoli, Raúl Dante |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Físicas Entanglement and quantum nonlocality Boson systems |
topic |
Ciencias Físicas Entanglement and quantum nonlocality Boson systems |
dc.description.none.fl_txt_mv |
We examine the entanglement induced by an angular momentum coupling between two harmonic systems. The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic potential, or equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and thermal entanglement, obtaining analytic expressions for the entanglement entropy and negativity through the gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature, entanglement is non-zero just within a finite field or frequency window and no longer diverges. Moreover, the limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the gaussian quantum discord and its difference with the negativity is also discussed. |
description |
We examine the entanglement induced by an angular momentum coupling between two harmonic systems. The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic potential, or equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and thermal entanglement, obtaining analytic expressions for the entanglement entropy and negativity through the gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature, entanglement is non-zero just within a finite field or frequency window and no longer diverges. Moreover, the limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the gaussian quantum discord and its difference with the negativity is also discussed. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/4214 |
url |
https://digital.cic.gba.gob.ar/handle/11746/4214 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.84.052320 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
APS physics |
publisher.none.fl_str_mv |
APS physics |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618601998319616 |
score |
13.070432 |