Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model

Autores
De Francesco, Pablo; Valdivia Torres, Lesly Spring; Cabral, Agustina; Reynaldo, Mirta Beatriz; Raingo, Jesica; Sakata, I.; Osborne-Lawrence, S.; Zigman, J.M.; Perelló, Mario
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión enviada
Descripción
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
Materia
Biología Celular, Microbiología
amygdala
food intake
stress
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/2374

id CICBA_6bda925a32070d7545bffbcb87469c02
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/2374
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse modelDe Francesco, PabloValdivia Torres, Lesly SpringCabral, AgustinaReynaldo, Mirta BeatrizRaingo, JesicaSakata, I.Osborne-Lawrence, S.Zigman, J.M.Perelló, MarioBiología Celular, Microbiologíaamygdalafood intakestressThe corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/2374spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:14Zoai:digital.cic.gba.gob.ar:11746/2374Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:14.356CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
title Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
spellingShingle Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
De Francesco, Pablo
Biología Celular, Microbiología
amygdala
food intake
stress
title_short Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
title_full Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
title_fullStr Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
title_full_unstemmed Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
title_sort Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
dc.creator.none.fl_str_mv De Francesco, Pablo
Valdivia Torres, Lesly Spring
Cabral, Agustina
Reynaldo, Mirta Beatriz
Raingo, Jesica
Sakata, I.
Osborne-Lawrence, S.
Zigman, J.M.
Perelló, Mario
author De Francesco, Pablo
author_facet De Francesco, Pablo
Valdivia Torres, Lesly Spring
Cabral, Agustina
Reynaldo, Mirta Beatriz
Raingo, Jesica
Sakata, I.
Osborne-Lawrence, S.
Zigman, J.M.
Perelló, Mario
author_role author
author2 Valdivia Torres, Lesly Spring
Cabral, Agustina
Reynaldo, Mirta Beatriz
Raingo, Jesica
Sakata, I.
Osborne-Lawrence, S.
Zigman, J.M.
Perelló, Mario
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Biología Celular, Microbiología
amygdala
food intake
stress
topic Biología Celular, Microbiología
amygdala
food intake
stress
dc.description.none.fl_txt_mv The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
description The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/2374
url https://digital.cic.gba.gob.ar/handle/11746/2374
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618610530582528
score 13.070432