Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles
- Autores
- Escalada, Juan P.; Arce, Valeria Beatriz; Carlos, Luciano; Porcal, Gabriela; Biasutti, M. Alicia; Criado, Susana; García, Norman; Mártire, Daniel Osvaldo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Some organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide.
- Materia
-
Ciencias Físicas
Nanopartículas
rendimiento cuántico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/4046
Ver los metadatos del registro completo
| id |
CICBA_6a83851be970219fd4853ad9d4ea5906 |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/4046 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticlesEscalada, Juan P.Arce, Valeria BeatrizCarlos, LucianoPorcal, GabrielaBiasutti, M. AliciaCriado, SusanaGarcía, NormanMártire, Daniel OsvaldoCiencias FísicasNanopartículasrendimiento cuánticoSome organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide.Royal Society of Chemistry2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4046enginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C6EM00215Cinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-23T11:14:19Zoai:digital.cic.gba.gob.ar:11746/4046Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-23 11:14:19.83CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| title |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| spellingShingle |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles Escalada, Juan P. Ciencias Físicas Nanopartículas rendimiento cuántico |
| title_short |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| title_full |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| title_fullStr |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| title_full_unstemmed |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| title_sort |
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles |
| dc.creator.none.fl_str_mv |
Escalada, Juan P. Arce, Valeria Beatriz Carlos, Luciano Porcal, Gabriela Biasutti, M. Alicia Criado, Susana García, Norman Mártire, Daniel Osvaldo |
| author |
Escalada, Juan P. |
| author_facet |
Escalada, Juan P. Arce, Valeria Beatriz Carlos, Luciano Porcal, Gabriela Biasutti, M. Alicia Criado, Susana García, Norman Mártire, Daniel Osvaldo |
| author_role |
author |
| author2 |
Arce, Valeria Beatriz Carlos, Luciano Porcal, Gabriela Biasutti, M. Alicia Criado, Susana García, Norman Mártire, Daniel Osvaldo |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Físicas Nanopartículas rendimiento cuántico |
| topic |
Ciencias Físicas Nanopartículas rendimiento cuántico |
| dc.description.none.fl_txt_mv |
Some organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide. |
| description |
Some organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/4046 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/4046 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C6EM00215C |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1846783882059317248 |
| score |
12.982451 |