Adversarial image generation using geneticalgorithms with black-box technique
- Autores
- Pérez, Gabriela Alejandra; Pons, Claudia Fabiana
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Convolutional neural networks are a technique that has demon-strated great success in computer vision tasks, such as image classifica-tion and object detection. Like any machine learning model, they havelimitations and vulnerabilities that must be carefully considered for safeand effective use. One of the main limitations lies in their complexityand the difficulty of interpreting their internal workings, which can beexploited for malicious purposes. The goal of these attacks is to makedeliberate changes to the input data in order to deceive the model andcause it to make incorrect decisions. These attacks are known as adver-sarial attacks. This work focuses on the generation of adversarial im-ages using genetic algorithms for a convolutional neural network trainedon the MNIST dataset. Several strategies are employed, including tar-geted and untargeted attacks, as well as the presentation of interpretableand non-interpretable images that are unrecognizable to humans but aremisidentified and confidently classified by the network. The experimentdemonstrates the ability to generate adversarial images in a relativelyshort time, highlighting the vulnerability of neural networks and the easewith which they can be deceived. These results underscore the impor-tance of developing more secure and reliable artificial intelligence systemscapable of resisting such attacks
Las redes neuronales convolucionales conforman una técnica que ha demostrado un gran éxito en tareas de visión artificial, como la clasificación de imágenes y detección de objetos. Como cualquier modelo de aprendizaje automático, tiene limitaciones y vulnerabilidades que deben ser consideradas cuidadosamente para utilizarlas de manera segura y efectiva. Una de las limitaciones principales se encuentra en su complejidad y la dificultad de interpretar su funcionamiento interno, lo que puede ser explotado con fines maliciosos. El objetivo de estos ataques consiste en hacer cambios deliberados en la entrada de datos, de forma tal de engañar al modelo y hacer que tome decisiones incorrectas. Estos ataques son conocidos como ataques adversarios. Este trabajo se centra en la generación de imágenes adversarias utilizando algoritmos genéticos para una red neuronal convolucional entrenada con el dataset MNIST. Se utilizan varias estrategias incluyendo ataques dirigidos y no dirigidos, así como también se presentan imágenes interpretables y no interpretables, no reconocibles para los humanos, pero que la red identifica y clasifica erróneamente con alta confianza. El experimento muestra la posibilidad de generar imágenes adversarias en un tiempo relativamente corto, lo que pone en evidencia la vulnerabilidad de las redes neuronales y la facilidad con la que pueden ser engañadas. Estos resultados resaltan la importancia de desarrollar sistemas de inteligencia artificial más seguros y confiables, capaces de resistir estos ataques. - Materia
-
Ciencias de la Computación e Información
Convolutional Neural Networks
Adversarial Images
Genetic Algorithms
Redes Neuronales convolucionales
Imágenes adversarias
Algoritmos genéticos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12478
Ver los metadatos del registro completo
id |
CICBA_3fcddcdff54432545c840368883b723b |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12478 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Adversarial image generation using geneticalgorithms with black-box techniquePérez, Gabriela AlejandraPons, Claudia FabianaCiencias de la Computación e InformaciónConvolutional Neural NetworksAdversarial ImagesGenetic AlgorithmsRedes Neuronales convolucionalesImágenes adversariasAlgoritmos genéticosConvolutional neural networks are a technique that has demon-strated great success in computer vision tasks, such as image classifica-tion and object detection. Like any machine learning model, they havelimitations and vulnerabilities that must be carefully considered for safeand effective use. One of the main limitations lies in their complexityand the difficulty of interpreting their internal workings, which can beexploited for malicious purposes. The goal of these attacks is to makedeliberate changes to the input data in order to deceive the model andcause it to make incorrect decisions. These attacks are known as adver-sarial attacks. This work focuses on the generation of adversarial im-ages using genetic algorithms for a convolutional neural network trainedon the MNIST dataset. Several strategies are employed, including tar-geted and untargeted attacks, as well as the presentation of interpretableand non-interpretable images that are unrecognizable to humans but aremisidentified and confidently classified by the network. The experimentdemonstrates the ability to generate adversarial images in a relativelyshort time, highlighting the vulnerability of neural networks and the easewith which they can be deceived. These results underscore the impor-tance of developing more secure and reliable artificial intelligence systemscapable of resisting such attacksLas redes neuronales convolucionales conforman una técnica que ha demostrado un gran éxito en tareas de visión artificial, como la clasificación de imágenes y detección de objetos. Como cualquier modelo de aprendizaje automático, tiene limitaciones y vulnerabilidades que deben ser consideradas cuidadosamente para utilizarlas de manera segura y efectiva. Una de las limitaciones principales se encuentra en su complejidad y la dificultad de interpretar su funcionamiento interno, lo que puede ser explotado con fines maliciosos. El objetivo de estos ataques consiste en hacer cambios deliberados en la entrada de datos, de forma tal de engañar al modelo y hacer que tome decisiones incorrectas. Estos ataques son conocidos como ataques adversarios. Este trabajo se centra en la generación de imágenes adversarias utilizando algoritmos genéticos para una red neuronal convolucional entrenada con el dataset MNIST. Se utilizan varias estrategias incluyendo ataques dirigidos y no dirigidos, así como también se presentan imágenes interpretables y no interpretables, no reconocibles para los humanos, pero que la red identifica y clasifica erróneamente con alta confianza. El experimento muestra la posibilidad de generar imágenes adversarias en un tiempo relativamente corto, lo que pone en evidencia la vulnerabilidad de las redes neuronales y la facilidad con la que pueden ser engañadas. Estos resultados resaltan la importancia de desarrollar sistemas de inteligencia artificial más seguros y confiables, capaces de resistir estos ataques.2023-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12478spainfo:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:51Zoai:digital.cic.gba.gob.ar:11746/12478Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:51.284CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Adversarial image generation using geneticalgorithms with black-box technique |
title |
Adversarial image generation using geneticalgorithms with black-box technique |
spellingShingle |
Adversarial image generation using geneticalgorithms with black-box technique Pérez, Gabriela Alejandra Ciencias de la Computación e Información Convolutional Neural Networks Adversarial Images Genetic Algorithms Redes Neuronales convolucionales Imágenes adversarias Algoritmos genéticos |
title_short |
Adversarial image generation using geneticalgorithms with black-box technique |
title_full |
Adversarial image generation using geneticalgorithms with black-box technique |
title_fullStr |
Adversarial image generation using geneticalgorithms with black-box technique |
title_full_unstemmed |
Adversarial image generation using geneticalgorithms with black-box technique |
title_sort |
Adversarial image generation using geneticalgorithms with black-box technique |
dc.creator.none.fl_str_mv |
Pérez, Gabriela Alejandra Pons, Claudia Fabiana |
author |
Pérez, Gabriela Alejandra |
author_facet |
Pérez, Gabriela Alejandra Pons, Claudia Fabiana |
author_role |
author |
author2 |
Pons, Claudia Fabiana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Convolutional Neural Networks Adversarial Images Genetic Algorithms Redes Neuronales convolucionales Imágenes adversarias Algoritmos genéticos |
topic |
Ciencias de la Computación e Información Convolutional Neural Networks Adversarial Images Genetic Algorithms Redes Neuronales convolucionales Imágenes adversarias Algoritmos genéticos |
dc.description.none.fl_txt_mv |
Convolutional neural networks are a technique that has demon-strated great success in computer vision tasks, such as image classifica-tion and object detection. Like any machine learning model, they havelimitations and vulnerabilities that must be carefully considered for safeand effective use. One of the main limitations lies in their complexityand the difficulty of interpreting their internal workings, which can beexploited for malicious purposes. The goal of these attacks is to makedeliberate changes to the input data in order to deceive the model andcause it to make incorrect decisions. These attacks are known as adver-sarial attacks. This work focuses on the generation of adversarial im-ages using genetic algorithms for a convolutional neural network trainedon the MNIST dataset. Several strategies are employed, including tar-geted and untargeted attacks, as well as the presentation of interpretableand non-interpretable images that are unrecognizable to humans but aremisidentified and confidently classified by the network. The experimentdemonstrates the ability to generate adversarial images in a relativelyshort time, highlighting the vulnerability of neural networks and the easewith which they can be deceived. These results underscore the impor-tance of developing more secure and reliable artificial intelligence systemscapable of resisting such attacks Las redes neuronales convolucionales conforman una técnica que ha demostrado un gran éxito en tareas de visión artificial, como la clasificación de imágenes y detección de objetos. Como cualquier modelo de aprendizaje automático, tiene limitaciones y vulnerabilidades que deben ser consideradas cuidadosamente para utilizarlas de manera segura y efectiva. Una de las limitaciones principales se encuentra en su complejidad y la dificultad de interpretar su funcionamiento interno, lo que puede ser explotado con fines maliciosos. El objetivo de estos ataques consiste en hacer cambios deliberados en la entrada de datos, de forma tal de engañar al modelo y hacer que tome decisiones incorrectas. Estos ataques son conocidos como ataques adversarios. Este trabajo se centra en la generación de imágenes adversarias utilizando algoritmos genéticos para una red neuronal convolucional entrenada con el dataset MNIST. Se utilizan varias estrategias incluyendo ataques dirigidos y no dirigidos, así como también se presentan imágenes interpretables y no interpretables, no reconocibles para los humanos, pero que la red identifica y clasifica erróneamente con alta confianza. El experimento muestra la posibilidad de generar imágenes adversarias en un tiempo relativamente corto, lo que pone en evidencia la vulnerabilidad de las redes neuronales y la facilidad con la que pueden ser engañadas. Estos resultados resaltan la importancia de desarrollar sistemas de inteligencia artificial más seguros y confiables, capaces de resistir estos ataques. |
description |
Convolutional neural networks are a technique that has demon-strated great success in computer vision tasks, such as image classifica-tion and object detection. Like any machine learning model, they havelimitations and vulnerabilities that must be carefully considered for safeand effective use. One of the main limitations lies in their complexityand the difficulty of interpreting their internal workings, which can beexploited for malicious purposes. The goal of these attacks is to makedeliberate changes to the input data in order to deceive the model andcause it to make incorrect decisions. These attacks are known as adver-sarial attacks. This work focuses on the generation of adversarial im-ages using genetic algorithms for a convolutional neural network trainedon the MNIST dataset. Several strategies are employed, including tar-geted and untargeted attacks, as well as the presentation of interpretableand non-interpretable images that are unrecognizable to humans but aremisidentified and confidently classified by the network. The experimentdemonstrates the ability to generate adversarial images in a relativelyshort time, highlighting the vulnerability of neural networks and the easewith which they can be deceived. These results underscore the impor-tance of developing more secure and reliable artificial intelligence systemscapable of resisting such attacks |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12478 |
url |
https://digital.cic.gba.gob.ar/handle/11746/12478 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618580785627136 |
score |
13.070432 |