Microstructural and chemical study on an expansive dolostone from Argentina

Autores
Milanesi, Carlos Alberto; Locati, Francisco; Marfil, Silvina Andrea
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión enviada
Descripción
An Argentinian fine-grained dolostone has proved to react deleteriously with alkalis following a mechanism similar to ACR. As this reaction is very controversial, the rock was reassessed for going deeper into the knowledge of its reactivity. The effect of the aggregate grain size on mortar expansion was evaluated by comparing RILEM AAR-2´s test results with those from Lu et al. test method. The inhibiting effect of a high-level replacement of low-calcium fly ash was also tested. The influence of rock porosity was studied on rock and concrete prisms, stored under conditions similar to ASTM C586 and RILEM AAR-3, respectively. Microstructural and chemical studies (mercury porosimetry, polarizing microscopy, XRD, SEM-EDS) were carried out on fresh and tested rock samples. The amount of alkali-silica gel observed was very low to explain mortar or concrete expansion. Fly ash failed to inhibit mortar expansion. The only correlation observed was between concrete expansion and degree of dedolomitization.
Materia
Geología
alkali-carbonate reaction
dedolomitization
microstructure
porosity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/4737

id CICBA_1e69d25c3479db75902eac8f391b99f6
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/4737
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Microstructural and chemical study on an expansive dolostone from ArgentinaMilanesi, Carlos AlbertoLocati, FranciscoMarfil, Silvina AndreaGeologíaalkali-carbonate reactiondedolomitizationmicrostructureporosityAn Argentinian fine-grained dolostone has proved to react deleteriously with alkalis following a mechanism similar to ACR. As this reaction is very controversial, the rock was reassessed for going deeper into the knowledge of its reactivity. The effect of the aggregate grain size on mortar expansion was evaluated by comparing RILEM AAR-2´s test results with those from Lu et al. test method. The inhibiting effect of a high-level replacement of low-calcium fly ash was also tested. The influence of rock porosity was studied on rock and concrete prisms, stored under conditions similar to ASTM C586 and RILEM AAR-3, respectively. Microstructural and chemical studies (mercury porosimetry, polarizing microscopy, XRD, SEM-EDS) were carried out on fresh and tested rock samples. The amount of alkali-silica gel observed was very low to explain mortar or concrete expansion. Fly ash failed to inhibit mortar expansion. The only correlation observed was between concrete expansion and degree of dedolomitization.2016info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4737enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:27Zoai:digital.cic.gba.gob.ar:11746/4737Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:28.269CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Microstructural and chemical study on an expansive dolostone from Argentina
title Microstructural and chemical study on an expansive dolostone from Argentina
spellingShingle Microstructural and chemical study on an expansive dolostone from Argentina
Milanesi, Carlos Alberto
Geología
alkali-carbonate reaction
dedolomitization
microstructure
porosity
title_short Microstructural and chemical study on an expansive dolostone from Argentina
title_full Microstructural and chemical study on an expansive dolostone from Argentina
title_fullStr Microstructural and chemical study on an expansive dolostone from Argentina
title_full_unstemmed Microstructural and chemical study on an expansive dolostone from Argentina
title_sort Microstructural and chemical study on an expansive dolostone from Argentina
dc.creator.none.fl_str_mv Milanesi, Carlos Alberto
Locati, Francisco
Marfil, Silvina Andrea
author Milanesi, Carlos Alberto
author_facet Milanesi, Carlos Alberto
Locati, Francisco
Marfil, Silvina Andrea
author_role author
author2 Locati, Francisco
Marfil, Silvina Andrea
author2_role author
author
dc.subject.none.fl_str_mv Geología
alkali-carbonate reaction
dedolomitization
microstructure
porosity
topic Geología
alkali-carbonate reaction
dedolomitization
microstructure
porosity
dc.description.none.fl_txt_mv An Argentinian fine-grained dolostone has proved to react deleteriously with alkalis following a mechanism similar to ACR. As this reaction is very controversial, the rock was reassessed for going deeper into the knowledge of its reactivity. The effect of the aggregate grain size on mortar expansion was evaluated by comparing RILEM AAR-2´s test results with those from Lu et al. test method. The inhibiting effect of a high-level replacement of low-calcium fly ash was also tested. The influence of rock porosity was studied on rock and concrete prisms, stored under conditions similar to ASTM C586 and RILEM AAR-3, respectively. Microstructural and chemical studies (mercury porosimetry, polarizing microscopy, XRD, SEM-EDS) were carried out on fresh and tested rock samples. The amount of alkali-silica gel observed was very low to explain mortar or concrete expansion. Fly ash failed to inhibit mortar expansion. The only correlation observed was between concrete expansion and degree of dedolomitization.
description An Argentinian fine-grained dolostone has proved to react deleteriously with alkalis following a mechanism similar to ACR. As this reaction is very controversial, the rock was reassessed for going deeper into the knowledge of its reactivity. The effect of the aggregate grain size on mortar expansion was evaluated by comparing RILEM AAR-2´s test results with those from Lu et al. test method. The inhibiting effect of a high-level replacement of low-calcium fly ash was also tested. The influence of rock porosity was studied on rock and concrete prisms, stored under conditions similar to ASTM C586 and RILEM AAR-3, respectively. Microstructural and chemical studies (mercury porosimetry, polarizing microscopy, XRD, SEM-EDS) were carried out on fresh and tested rock samples. The amount of alkali-silica gel observed was very low to explain mortar or concrete expansion. Fly ash failed to inhibit mortar expansion. The only correlation observed was between concrete expansion and degree of dedolomitization.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/4737
url https://digital.cic.gba.gob.ar/handle/11746/4737
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340421652447232
score 12.623145