Current trends on role of biological treatment in integrated treatment technologies of textile wastewater

Autores
Ceretta, María Belén; Nercessian, Débora; Wolski, Erika A.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Wastewater discharge is a matter of concern as it is the primary source of water pollution. Consequently, wastewater treatment plays a key role in reducing the negative impact that wastewater discharge produce into the environment. Particularly, the effluents produced by textile industry are composed of high concentration of hazardous compounds such as dyes, as well as having high levels of chemical and biological oxygen demand, suspended solids, variable pH, and high concentration of salt. Main efforts have been focused on the development of methods consuming less water or reusing it, and also on the development of dyes with a better fixation capacity. However, the problem of how to treat these harmful effluents is still pending. Different treatment technologies have been developed, such as coagulation-flocculation, adsorption, membrane filtration, reverse osmosis, advanced oxidation, and biological processes (activated sludge, anaerobic-aerobic treatment, and membrane bioreactor). Concerning to biological treatments, even though they are considered as the most environmentally friendly and economic methods, their industrial application is still uncertain. On the one hand, this is due to the costs of treatment plants installation and, on the other, to the fact that most of the studies are carried out with simulated or diluted effluents that do not represent what really happens in the industries. Integrated treatment technologies by combining the efficiency two or more methodologies used to be more efficient for the decontamination of textile wastewater, than treatments used separately. The elimination of hazardous compounds had been reported using combination of physical, chemical, and biological processes. On this way, as degradation products can sometimes be even more toxic than the parent compounds, effluent toxicity assessment is an essential feature in the development of these alternatives. This article provides a critical view on the state of art of biological treatment, the degree of advancement and the prospects for their application, also discussing the concept of integrated treatment and the importance of including toxicity assays to reach an integral approach to wastewater treatment.
Materia
Biología Celular, Microbiología
Textile wastewater
Biological treatment
Simulated effluents
Real effluents
Toxicity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11832

id CICBA_1627a0b062af197914406d03c3340f93
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11832
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Current trends on role of biological treatment in integrated treatment technologies of textile wastewaterCeretta, María BelénNercessian, DéboraWolski, Erika A.Biología Celular, MicrobiologíaTextile wastewaterBiological treatmentSimulated effluentsReal effluentsToxicityWastewater discharge is a matter of concern as it is the primary source of water pollution. Consequently, wastewater treatment plays a key role in reducing the negative impact that wastewater discharge produce into the environment. Particularly, the effluents produced by textile industry are composed of high concentration of hazardous compounds such as dyes, as well as having high levels of chemical and biological oxygen demand, suspended solids, variable pH, and high concentration of salt. Main efforts have been focused on the development of methods consuming less water or reusing it, and also on the development of dyes with a better fixation capacity. However, the problem of how to treat these harmful effluents is still pending. Different treatment technologies have been developed, such as coagulation-flocculation, adsorption, membrane filtration, reverse osmosis, advanced oxidation, and biological processes (activated sludge, anaerobic-aerobic treatment, and membrane bioreactor). Concerning to biological treatments, even though they are considered as the most environmentally friendly and economic methods, their industrial application is still uncertain. On the one hand, this is due to the costs of treatment plants installation and, on the other, to the fact that most of the studies are carried out with simulated or diluted effluents that do not represent what really happens in the industries. Integrated treatment technologies by combining the efficiency two or more methodologies used to be more efficient for the decontamination of textile wastewater, than treatments used separately. The elimination of hazardous compounds had been reported using combination of physical, chemical, and biological processes. On this way, as degradation products can sometimes be even more toxic than the parent compounds, effluent toxicity assessment is an essential feature in the development of these alternatives. This article provides a critical view on the state of art of biological treatment, the degree of advancement and the prospects for their application, also discussing the concept of integrated treatment and the importance of including toxicity assays to reach an integral approach to wastewater treatment.2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/epub+ziphttps://digital.cic.gba.gob.ar/handle/11746/11832enginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2021.651025info:eu-repo/semantics/altIdentifier/issn/1664-302Xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:02Zoai:digital.cic.gba.gob.ar:11746/11832Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:03.284CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
title Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
spellingShingle Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
Ceretta, María Belén
Biología Celular, Microbiología
Textile wastewater
Biological treatment
Simulated effluents
Real effluents
Toxicity
title_short Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
title_full Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
title_fullStr Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
title_full_unstemmed Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
title_sort Current trends on role of biological treatment in integrated treatment technologies of textile wastewater
dc.creator.none.fl_str_mv Ceretta, María Belén
Nercessian, Débora
Wolski, Erika A.
author Ceretta, María Belén
author_facet Ceretta, María Belén
Nercessian, Débora
Wolski, Erika A.
author_role author
author2 Nercessian, Débora
Wolski, Erika A.
author2_role author
author
dc.subject.none.fl_str_mv Biología Celular, Microbiología
Textile wastewater
Biological treatment
Simulated effluents
Real effluents
Toxicity
topic Biología Celular, Microbiología
Textile wastewater
Biological treatment
Simulated effluents
Real effluents
Toxicity
dc.description.none.fl_txt_mv Wastewater discharge is a matter of concern as it is the primary source of water pollution. Consequently, wastewater treatment plays a key role in reducing the negative impact that wastewater discharge produce into the environment. Particularly, the effluents produced by textile industry are composed of high concentration of hazardous compounds such as dyes, as well as having high levels of chemical and biological oxygen demand, suspended solids, variable pH, and high concentration of salt. Main efforts have been focused on the development of methods consuming less water or reusing it, and also on the development of dyes with a better fixation capacity. However, the problem of how to treat these harmful effluents is still pending. Different treatment technologies have been developed, such as coagulation-flocculation, adsorption, membrane filtration, reverse osmosis, advanced oxidation, and biological processes (activated sludge, anaerobic-aerobic treatment, and membrane bioreactor). Concerning to biological treatments, even though they are considered as the most environmentally friendly and economic methods, their industrial application is still uncertain. On the one hand, this is due to the costs of treatment plants installation and, on the other, to the fact that most of the studies are carried out with simulated or diluted effluents that do not represent what really happens in the industries. Integrated treatment technologies by combining the efficiency two or more methodologies used to be more efficient for the decontamination of textile wastewater, than treatments used separately. The elimination of hazardous compounds had been reported using combination of physical, chemical, and biological processes. On this way, as degradation products can sometimes be even more toxic than the parent compounds, effluent toxicity assessment is an essential feature in the development of these alternatives. This article provides a critical view on the state of art of biological treatment, the degree of advancement and the prospects for their application, also discussing the concept of integrated treatment and the importance of including toxicity assays to reach an integral approach to wastewater treatment.
description Wastewater discharge is a matter of concern as it is the primary source of water pollution. Consequently, wastewater treatment plays a key role in reducing the negative impact that wastewater discharge produce into the environment. Particularly, the effluents produced by textile industry are composed of high concentration of hazardous compounds such as dyes, as well as having high levels of chemical and biological oxygen demand, suspended solids, variable pH, and high concentration of salt. Main efforts have been focused on the development of methods consuming less water or reusing it, and also on the development of dyes with a better fixation capacity. However, the problem of how to treat these harmful effluents is still pending. Different treatment technologies have been developed, such as coagulation-flocculation, adsorption, membrane filtration, reverse osmosis, advanced oxidation, and biological processes (activated sludge, anaerobic-aerobic treatment, and membrane bioreactor). Concerning to biological treatments, even though they are considered as the most environmentally friendly and economic methods, their industrial application is still uncertain. On the one hand, this is due to the costs of treatment plants installation and, on the other, to the fact that most of the studies are carried out with simulated or diluted effluents that do not represent what really happens in the industries. Integrated treatment technologies by combining the efficiency two or more methodologies used to be more efficient for the decontamination of textile wastewater, than treatments used separately. The elimination of hazardous compounds had been reported using combination of physical, chemical, and biological processes. On this way, as degradation products can sometimes be even more toxic than the parent compounds, effluent toxicity assessment is an essential feature in the development of these alternatives. This article provides a critical view on the state of art of biological treatment, the degree of advancement and the prospects for their application, also discussing the concept of integrated treatment and the importance of including toxicity assays to reach an integral approach to wastewater treatment.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11832
url https://digital.cic.gba.gob.ar/handle/11746/11832
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2021.651025
info:eu-repo/semantics/altIdentifier/issn/1664-302X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
application/epub+zip
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618596136779776
score 13.070432