Fractional Fourier transform description with use of differential operators

Autores
Ruiz, Beatriz; Rabal, Héctor J.
Año de publicación
1997
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
The fractional Fourier transform (FRT) is expressed by means of propagation and thin-lens phase delay operators, and a large number of optical systems associated with it are found. At the same time, the output of optical systems is found in terms of the FRT, and the simplicity of the approach is illustrated with two examples. Mathematical definitions for the P-order convolution and correlation are proposed as generalizations of the classical ones such that, when the P-order FRT is applied to them, theorems that generalize the classical convolution and correlation are verified.
Materia
Ciencias Físicas
Óptica, Acústica
propagation
optical systems
fractional Fourier transform
convolution
correlation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/1149

id CICBA_0be21f98caf5ae102799c892c1ef1fc8
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/1149
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Fractional Fourier transform description with use of differential operatorsRuiz, BeatrizRabal, Héctor J.Ciencias FísicasÓptica, Acústicapropagationoptical systemsfractional Fourier transformconvolutioncorrelationThe fractional Fourier transform (FRT) is expressed by means of propagation and thin-lens phase delay operators, and a large number of optical systems associated with it are found. At the same time, the output of optical systems is found in terms of the FRT, and the simplicity of the approach is illustrated with two examples. Mathematical definitions for the P-order convolution and correlation are proposed as generalizations of the classical ones such that, when the P-order FRT is applied to them, theorems that generalize the classical convolution and correlation are verified.1997info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/1149enghttp://digital.cic.gba.gob.ar/handle/123456789/68info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:38Zoai:digital.cic.gba.gob.ar:11746/1149Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:39.194CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Fractional Fourier transform description with use of differential operators
title Fractional Fourier transform description with use of differential operators
spellingShingle Fractional Fourier transform description with use of differential operators
Ruiz, Beatriz
Ciencias Físicas
Óptica, Acústica
propagation
optical systems
fractional Fourier transform
convolution
correlation
title_short Fractional Fourier transform description with use of differential operators
title_full Fractional Fourier transform description with use of differential operators
title_fullStr Fractional Fourier transform description with use of differential operators
title_full_unstemmed Fractional Fourier transform description with use of differential operators
title_sort Fractional Fourier transform description with use of differential operators
dc.creator.none.fl_str_mv Ruiz, Beatriz
Rabal, Héctor J.
author Ruiz, Beatriz
author_facet Ruiz, Beatriz
Rabal, Héctor J.
author_role author
author2 Rabal, Héctor J.
author2_role author
dc.subject.none.fl_str_mv Ciencias Físicas
Óptica, Acústica
propagation
optical systems
fractional Fourier transform
convolution
correlation
topic Ciencias Físicas
Óptica, Acústica
propagation
optical systems
fractional Fourier transform
convolution
correlation
dc.description.none.fl_txt_mv The fractional Fourier transform (FRT) is expressed by means of propagation and thin-lens phase delay operators, and a large number of optical systems associated with it are found. At the same time, the output of optical systems is found in terms of the FRT, and the simplicity of the approach is illustrated with two examples. Mathematical definitions for the P-order convolution and correlation are proposed as generalizations of the classical ones such that, when the P-order FRT is applied to them, theorems that generalize the classical convolution and correlation are verified.
description The fractional Fourier transform (FRT) is expressed by means of propagation and thin-lens phase delay operators, and a large number of optical systems associated with it are found. At the same time, the output of optical systems is found in terms of the FRT, and the simplicity of the approach is illustrated with two examples. Mathematical definitions for the P-order convolution and correlation are proposed as generalizations of the classical ones such that, when the P-order FRT is applied to them, theorems that generalize the classical convolution and correlation are verified.
publishDate 1997
dc.date.none.fl_str_mv 1997
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/1149
url https://digital.cic.gba.gob.ar/handle/11746/1149
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://digital.cic.gba.gob.ar/handle/123456789/68
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842974774953771008
score 12.993085