Aprendizaje y análisis de redes neuronales artificiales profundas

Autores
Dinamarca, Agustina
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión publicada
Colaborador/a o director/a de tesis
Monge, David A.
Kaluza, Pablo F.
Miranda, Enrique
Catania, Carlos A.
Moyano, Luis G.
Descripción
Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.
Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales.
Materia
Informática
Inteligencia artificial
Ciencias de la información
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar/
Repositorio
Biblioteca Digital (UNCu)
Institución
Universidad Nacional de Cuyo
OAI Identificador
oai:bdigital.uncu.edu.ar:13989

id BDUNCU_3a03f8d2ff33bf7c8ecf56ddf390bd88
oai_identifier_str oai:bdigital.uncu.edu.ar:13989
network_acronym_str BDUNCU
repository_id_str 1584
network_name_str Biblioteca Digital (UNCu)
spelling Aprendizaje y análisis de redes neuronales artificiales profundas Dinamarca, AgustinaInformáticaInteligencia artificialCiencias de la informaciónEsta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y NaturalesMonge, David A.Kaluza, Pablo F.Miranda, EnriqueCatania, Carlos A.Moyano, Luis G.2018-06-29info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTesina de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://bdigital.uncu.edu.ar/13989spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar/reponame:Biblioteca Digital (UNCu)instname:Universidad Nacional de Cuyoinstacron:UNCU2025-09-11T10:19:55Zoai:bdigital.uncu.edu.ar:13989Institucionalhttp://bdigital.uncu.edu.ar/Universidad públicaNo correspondehttp://bdigital.uncu.edu.ar/OAI/hdegiorgi@uncu.edu.ar;horaciod@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:15842025-09-11 10:19:56.04Biblioteca Digital (UNCu) - Universidad Nacional de Cuyofalse
dc.title.none.fl_str_mv Aprendizaje y análisis de redes neuronales artificiales profundas
title Aprendizaje y análisis de redes neuronales artificiales profundas
spellingShingle Aprendizaje y análisis de redes neuronales artificiales profundas
Dinamarca, Agustina
Informática
Inteligencia artificial
Ciencias de la información
title_short Aprendizaje y análisis de redes neuronales artificiales profundas
title_full Aprendizaje y análisis de redes neuronales artificiales profundas
title_fullStr Aprendizaje y análisis de redes neuronales artificiales profundas
title_full_unstemmed Aprendizaje y análisis de redes neuronales artificiales profundas
title_sort Aprendizaje y análisis de redes neuronales artificiales profundas
dc.creator.none.fl_str_mv Dinamarca, Agustina
author Dinamarca, Agustina
author_facet Dinamarca, Agustina
author_role author
dc.contributor.none.fl_str_mv Monge, David A.
Kaluza, Pablo F.
Miranda, Enrique
Catania, Carlos A.
Moyano, Luis G.
dc.subject.none.fl_str_mv Informática
Inteligencia artificial
Ciencias de la información
topic Informática
Inteligencia artificial
Ciencias de la información
dc.description.none.fl_txt_mv Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.
Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales.
description Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-29
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/publishedVersion
Tesina de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://bdigital.uncu.edu.ar/13989
url http://bdigital.uncu.edu.ar/13989
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UNCu)
instname:Universidad Nacional de Cuyo
instacron:UNCU
reponame_str Biblioteca Digital (UNCu)
collection Biblioteca Digital (UNCu)
instname_str Universidad Nacional de Cuyo
instacron_str UNCU
institution UNCU
repository.name.fl_str_mv Biblioteca Digital (UNCu) - Universidad Nacional de Cuyo
repository.mail.fl_str_mv hdegiorgi@uncu.edu.ar;horaciod@gmail.com
_version_ 1842974867484311553
score 13.070432