Aprendizaje y análisis de redes neuronales artificiales profundas
- Autores
- Dinamarca, Agustina
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Monge, David A.
Kaluza, Pablo F.
Miranda, Enrique
Catania, Carlos A.
Moyano, Luis G. - Descripción
- Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.
Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. - Materia
-
Informática
Inteligencia artificial
Ciencias de la información - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de Cuyo
- OAI Identificador
- oai:bdigital.uncu.edu.ar:13989
Ver los metadatos del registro completo
id |
BDUNCU_3a03f8d2ff33bf7c8ecf56ddf390bd88 |
---|---|
oai_identifier_str |
oai:bdigital.uncu.edu.ar:13989 |
network_acronym_str |
BDUNCU |
repository_id_str |
1584 |
network_name_str |
Biblioteca Digital (UNCu) |
spelling |
Aprendizaje y análisis de redes neuronales artificiales profundas Dinamarca, AgustinaInformáticaInteligencia artificialCiencias de la informaciónEsta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia.Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y NaturalesMonge, David A.Kaluza, Pablo F.Miranda, EnriqueCatania, Carlos A.Moyano, Luis G.2018-06-29info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTesina de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://bdigital.uncu.edu.ar/13989spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar/reponame:Biblioteca Digital (UNCu)instname:Universidad Nacional de Cuyoinstacron:UNCU2025-09-11T10:19:55Zoai:bdigital.uncu.edu.ar:13989Institucionalhttp://bdigital.uncu.edu.ar/Universidad públicaNo correspondehttp://bdigital.uncu.edu.ar/OAI/hdegiorgi@uncu.edu.ar;horaciod@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:15842025-09-11 10:19:56.04Biblioteca Digital (UNCu) - Universidad Nacional de Cuyofalse |
dc.title.none.fl_str_mv |
Aprendizaje y análisis de redes neuronales artificiales profundas |
title |
Aprendizaje y análisis de redes neuronales artificiales profundas |
spellingShingle |
Aprendizaje y análisis de redes neuronales artificiales profundas Dinamarca, Agustina Informática Inteligencia artificial Ciencias de la información |
title_short |
Aprendizaje y análisis de redes neuronales artificiales profundas |
title_full |
Aprendizaje y análisis de redes neuronales artificiales profundas |
title_fullStr |
Aprendizaje y análisis de redes neuronales artificiales profundas |
title_full_unstemmed |
Aprendizaje y análisis de redes neuronales artificiales profundas |
title_sort |
Aprendizaje y análisis de redes neuronales artificiales profundas |
dc.creator.none.fl_str_mv |
Dinamarca, Agustina |
author |
Dinamarca, Agustina |
author_facet |
Dinamarca, Agustina |
author_role |
author |
dc.contributor.none.fl_str_mv |
Monge, David A. Kaluza, Pablo F. Miranda, Enrique Catania, Carlos A. Moyano, Luis G. |
dc.subject.none.fl_str_mv |
Informática Inteligencia artificial Ciencias de la información |
topic |
Informática Inteligencia artificial Ciencias de la información |
dc.description.none.fl_txt_mv |
Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia. Fil: Dinamarca, Agustina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. |
description |
Esta tesis trata sobre las redes neuronales profundas (RNPs), modelos computacionales de aprendizaje autónomo, inspirados en el funcionamiento del sistema nervioso de los seres vivos. Actualmente, las RNPs han logrado un desempeño muy notable en tareas de Inteligencia Artificial. Sin embargo, es bien sabido que el entrenamiento de estos modelos viene acompañado de un alto costo y complejidad computacional. Por otro lado, se diseñan redes con gran variedad de formas y tamaños dependiendo de su aplicación. Por lo tanto, muchos modelos de RNPs han sido desarrollados, e incluso mejorados, para lograr cada vez mayor eficacia y eficiencia en las tareas para las cuales fueron diseñados. En particular, la tesis se centra en dos tipos de redes muy populares en el área de Visión Computacional: las redes densas (RDs) y las redes convolucionales (RCs). Los objetivos principales de esta investigación fueron medir cuán eficaces y eficientes son distintas configuraciones de RDs frente a RCs en una tarea de clasificación multiclase. Para cumplir con los objetivos fue necesario: aprender RDs y RCs que clasifiquen imágenes; evaluar el desempeño de cada red en términos de exactitud de clasificación y tiempo de aprendizaje; y comparar aquellas cantidades entre ambos tipos de modelo. Los resultados obtenidos fueron parcialmente consistentes con las hipótesis propuestas. Los más relevantes fueron que el 91 % de las RCs aprendidas fueron míınimamente un 9.11 % más eficaces que las RDs. Esto indica que las primeras presentan mejor capacidad de aprender patrones complejos que las segundas. Tal capacidad se debe a que las RCs poseen mayor cantidad de unidades ocultas que las RDs, sumado al hecho de que cada unidad de una capa convolucional tiene conexiones locales con regiones de la capa anterior, y comparte parámetros con el resto de las unidades de la misma capa. Por otro lado, el 82 % de las RDs aprendidas fueron como mínimo 6.4 min más eficientes que las RCs. Estos resultados se atribuyen fundamentalmente a la cantidad y complejidad de operaciones que las redes deben efectuar y, en menor medida, a la cantidad de parámetros que las mismas deben aprender. Por último, los resultados obtenidos en este trabajo sirven para entender el impacto de las variaciones estructurales de las RNPs en sus desempeños. Esta clase de estudios,junto a otros, permite incorporar una correcta y adecuada flexibilidad a cualquier dispositivo de RNPs para que funcione con mejor eficacia y eficiencia. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion Tesina de grado http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://bdigital.uncu.edu.ar/13989 |
url |
http://bdigital.uncu.edu.ar/13989 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UNCu) instname:Universidad Nacional de Cuyo instacron:UNCU |
reponame_str |
Biblioteca Digital (UNCu) |
collection |
Biblioteca Digital (UNCu) |
instname_str |
Universidad Nacional de Cuyo |
instacron_str |
UNCU |
institution |
UNCU |
repository.name.fl_str_mv |
Biblioteca Digital (UNCu) - Universidad Nacional de Cuyo |
repository.mail.fl_str_mv |
hdegiorgi@uncu.edu.ar;horaciod@gmail.com |
_version_ |
1842974867484311553 |
score |
13.070432 |