Burbujas oscilantes que se elevan en una celda doblemente confinada

Autores
Pavlov, Lucas Alejo; D’Angelo, María Verónica; Cachile, Mario Andrés; Roig, Veronique; Ern, Patricia
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cmFil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia
Fil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia
Fuente
An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70
Materia
BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
afa:afa_v33_nespecial_p066

id BDUBAFCEN_f4bb2044158222d2570f855098efadc7
oai_identifier_str afa:afa_v33_nespecial_p066
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Burbujas oscilantes que se elevan en una celda doblemente confinadaOscillating bubbles rising in a doubly confined cellPavlov, Lucas AlejoD’Angelo, María VerónicaCachile, Mario AndrésRoig, VeroniqueErn, PatriciaBUBBLESBUBBLE KINEMATICSBUBBLE SHAPECONFINED BUBBLESThe motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. FranciaFil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. FranciaAsociación Física Argentina2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar2025-09-29T13:40:24Zafa:afa_v33_nespecial_p066Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:25.118Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Burbujas oscilantes que se elevan en una celda doblemente confinada
Oscillating bubbles rising in a doubly confined cell
title Burbujas oscilantes que se elevan en una celda doblemente confinada
spellingShingle Burbujas oscilantes que se elevan en una celda doblemente confinada
Pavlov, Lucas Alejo
BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
title_short Burbujas oscilantes que se elevan en una celda doblemente confinada
title_full Burbujas oscilantes que se elevan en una celda doblemente confinada
title_fullStr Burbujas oscilantes que se elevan en una celda doblemente confinada
title_full_unstemmed Burbujas oscilantes que se elevan en una celda doblemente confinada
title_sort Burbujas oscilantes que se elevan en una celda doblemente confinada
dc.creator.none.fl_str_mv Pavlov, Lucas Alejo
D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
author Pavlov, Lucas Alejo
author_facet Pavlov, Lucas Alejo
D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
author_role author
author2 D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
author2_role author
author
author
author
dc.subject.none.fl_str_mv BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
topic BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
dc.description.none.fl_txt_mv The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪
Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia
Fil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia
description The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066
url https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618683710701568
score 13.070432