Burbujas oscilantes que se elevan en una celda doblemente confinada
- Autores
- Pavlov, Lucas Alejo; D’Angelo, María Verónica; Cachile, Mario Andrés; Roig, Veronique; Ern, Patricia
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm
Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina
Fil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia
Fil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia - Fuente
- An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70
- Materia
-
BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- afa:afa_v33_nespecial_p066
Ver los metadatos del registro completo
id |
BDUBAFCEN_f4bb2044158222d2570f855098efadc7 |
---|---|
oai_identifier_str |
afa:afa_v33_nespecial_p066 |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Burbujas oscilantes que se elevan en una celda doblemente confinadaOscillating bubbles rising in a doubly confined cellPavlov, Lucas AlejoD’Angelo, María VerónicaCachile, Mario AndrésRoig, VeroniqueErn, PatriciaBUBBLESBUBBLE KINEMATICSBUBBLE SHAPECONFINED BUBBLESThe motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. ArgentinaFil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. FranciaFil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. FranciaAsociación Física Argentina2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar2025-09-29T13:40:24Zafa:afa_v33_nespecial_p066Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:25.118Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Burbujas oscilantes que se elevan en una celda doblemente confinada Oscillating bubbles rising in a doubly confined cell |
title |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
spellingShingle |
Burbujas oscilantes que se elevan en una celda doblemente confinada Pavlov, Lucas Alejo BUBBLES BUBBLE KINEMATICS BUBBLE SHAPE CONFINED BUBBLES |
title_short |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
title_full |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
title_fullStr |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
title_full_unstemmed |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
title_sort |
Burbujas oscilantes que se elevan en una celda doblemente confinada |
dc.creator.none.fl_str_mv |
Pavlov, Lucas Alejo D’Angelo, María Verónica Cachile, Mario Andrés Roig, Veronique Ern, Patricia |
author |
Pavlov, Lucas Alejo |
author_facet |
Pavlov, Lucas Alejo D’Angelo, María Verónica Cachile, Mario Andrés Roig, Veronique Ern, Patricia |
author_role |
author |
author2 |
D’Angelo, María Verónica Cachile, Mario Andrés Roig, Veronique Ern, Patricia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BUBBLES BUBBLE KINEMATICS BUBBLE SHAPE CONFINED BUBBLES |
topic |
BUBBLES BUBBLE KINEMATICS BUBBLE SHAPE CONFINED BUBBLES |
dc.description.none.fl_txt_mv |
The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪ Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia Fil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia |
description |
The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪ |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066 |
url |
https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618683710701568 |
score |
13.070432 |