Improved Poincaré inequalities with weights
- Autores
- Drelichman, I.; Durán, R.G.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.
Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2008;347(1):286-293
- Materia
-
John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v347_n1_p286_Drelichman
Ver los metadatos del registro completo
id |
BDUBAFCEN_f4aa55a0d284ee929b4427a0dce94a90 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v347_n1_p286_Drelichman |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Improved Poincaré inequalities with weightsDrelichman, I.Durán, R.G.John domainsReverse doubling weightsWeighted Poincaré inequalityWeighted Sobolev inequalityIn this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_DrelichmanJ. Math. Anal. Appl. 2008;347(1):286-293reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:34Zpaperaa:paper_0022247X_v347_n1_p286_DrelichmanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:35.935Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Improved Poincaré inequalities with weights |
title |
Improved Poincaré inequalities with weights |
spellingShingle |
Improved Poincaré inequalities with weights Drelichman, I. John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
title_short |
Improved Poincaré inequalities with weights |
title_full |
Improved Poincaré inequalities with weights |
title_fullStr |
Improved Poincaré inequalities with weights |
title_full_unstemmed |
Improved Poincaré inequalities with weights |
title_sort |
Improved Poincaré inequalities with weights |
dc.creator.none.fl_str_mv |
Drelichman, I. Durán, R.G. |
author |
Drelichman, I. |
author_facet |
Drelichman, I. Durán, R.G. |
author_role |
author |
author2 |
Durán, R.G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
topic |
John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
dc.description.none.fl_txt_mv |
In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2008;347(1):286-293 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340704020332544 |
score |
12.623145 |