Improved Poincaré inequalities with weights
- Autores
- Drelichman, I.; Durán, R.G.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.
Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2008;347(1):286-293
- Materia
-
John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v347_n1_p286_Drelichman
Ver los metadatos del registro completo
| id |
BDUBAFCEN_f4aa55a0d284ee929b4427a0dce94a90 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v347_n1_p286_Drelichman |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Improved Poincaré inequalities with weightsDrelichman, I.Durán, R.G.John domainsReverse doubling weightsWeighted Poincaré inequalityWeighted Sobolev inequalityIn this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_DrelichmanJ. Math. Anal. Appl. 2008;347(1):286-293reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:43Zpaperaa:paper_0022247X_v347_n1_p286_DrelichmanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:45.06Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Improved Poincaré inequalities with weights |
| title |
Improved Poincaré inequalities with weights |
| spellingShingle |
Improved Poincaré inequalities with weights Drelichman, I. John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
| title_short |
Improved Poincaré inequalities with weights |
| title_full |
Improved Poincaré inequalities with weights |
| title_fullStr |
Improved Poincaré inequalities with weights |
| title_full_unstemmed |
Improved Poincaré inequalities with weights |
| title_sort |
Improved Poincaré inequalities with weights |
| dc.creator.none.fl_str_mv |
Drelichman, I. Durán, R.G. |
| author |
Drelichman, I. |
| author_facet |
Drelichman, I. Durán, R.G. |
| author_role |
author |
| author2 |
Durán, R.G. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
| topic |
John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality |
| dc.description.none.fl_txt_mv |
In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2008;347(1):286-293 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046093375373312 |
| score |
12.976206 |