SERS in PAH-Os and gold nanoparticle self-assembled multilayers

Autores
Tognalli, N.; Fainstein, A.; Calvo, E.; Bonazzola, C.; Pietrasanta, L.; Campoy-Quiles, M.; Etchegoin, P.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.
Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J Chem Phys 2005;123(4)
Materia
Electronic transition
Gold nanoparticles
Raman resonance
Self-assembled multilayers
Amplification
Atomic force microscopy
Ellipsometry
Gold
Nanostructured materials
Polyamides
Self assembly
Spectroscopic analysis
Multilayers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00219606_v123_n4_p_Tognalli

id BDUBAFCEN_f2f5d835ce972522bd0c3919e3fe6601
oai_identifier_str paperaa:paper_00219606_v123_n4_p_Tognalli
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling SERS in PAH-Os and gold nanoparticle self-assembled multilayersTognalli, N.Fainstein, A.Calvo, E.Bonazzola, C.Pietrasanta, L.Campoy-Quiles, M.Etchegoin, P.Electronic transitionGold nanoparticlesRaman resonanceSelf-assembled multilayersAmplificationAtomic force microscopyEllipsometryGoldNanostructured materialsPolyamidesSelf assemblySpectroscopic analysisMultilayersWe present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_TognalliJ Chem Phys 2005;123(4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:25Zpaperaa:paper_00219606_v123_n4_p_TognalliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:26.534Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv SERS in PAH-Os and gold nanoparticle self-assembled multilayers
title SERS in PAH-Os and gold nanoparticle self-assembled multilayers
spellingShingle SERS in PAH-Os and gold nanoparticle self-assembled multilayers
Tognalli, N.
Electronic transition
Gold nanoparticles
Raman resonance
Self-assembled multilayers
Amplification
Atomic force microscopy
Ellipsometry
Gold
Nanostructured materials
Polyamides
Self assembly
Spectroscopic analysis
Multilayers
title_short SERS in PAH-Os and gold nanoparticle self-assembled multilayers
title_full SERS in PAH-Os and gold nanoparticle self-assembled multilayers
title_fullStr SERS in PAH-Os and gold nanoparticle self-assembled multilayers
title_full_unstemmed SERS in PAH-Os and gold nanoparticle self-assembled multilayers
title_sort SERS in PAH-Os and gold nanoparticle self-assembled multilayers
dc.creator.none.fl_str_mv Tognalli, N.
Fainstein, A.
Calvo, E.
Bonazzola, C.
Pietrasanta, L.
Campoy-Quiles, M.
Etchegoin, P.
author Tognalli, N.
author_facet Tognalli, N.
Fainstein, A.
Calvo, E.
Bonazzola, C.
Pietrasanta, L.
Campoy-Quiles, M.
Etchegoin, P.
author_role author
author2 Fainstein, A.
Calvo, E.
Bonazzola, C.
Pietrasanta, L.
Campoy-Quiles, M.
Etchegoin, P.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Electronic transition
Gold nanoparticles
Raman resonance
Self-assembled multilayers
Amplification
Atomic force microscopy
Ellipsometry
Gold
Nanostructured materials
Polyamides
Self assembly
Spectroscopic analysis
Multilayers
topic Electronic transition
Gold nanoparticles
Raman resonance
Self-assembled multilayers
Amplification
Atomic force microscopy
Ellipsometry
Gold
Nanostructured materials
Polyamides
Self assembly
Spectroscopic analysis
Multilayers
dc.description.none.fl_txt_mv We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.
Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_Tognalli
url http://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_Tognalli
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J Chem Phys 2005;123(4)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608737861861376
score 13.001348