SERS in PAH-Os and gold nanoparticle self-assembled multilayers
- Autores
- Tognalli, N.; Fainstein, A.; Calvo, E.; Bonazzola, C.; Pietrasanta, L.; Campoy-Quiles, M.; Etchegoin, P.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.
Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J Chem Phys 2005;123(4)
- Materia
-
Electronic transition
Gold nanoparticles
Raman resonance
Self-assembled multilayers
Amplification
Atomic force microscopy
Ellipsometry
Gold
Nanostructured materials
Polyamides
Self assembly
Spectroscopic analysis
Multilayers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00219606_v123_n4_p_Tognalli
Ver los metadatos del registro completo
id |
BDUBAFCEN_f2f5d835ce972522bd0c3919e3fe6601 |
---|---|
oai_identifier_str |
paperaa:paper_00219606_v123_n4_p_Tognalli |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
SERS in PAH-Os and gold nanoparticle self-assembled multilayersTognalli, N.Fainstein, A.Calvo, E.Bonazzola, C.Pietrasanta, L.Campoy-Quiles, M.Etchegoin, P.Electronic transitionGold nanoparticlesRaman resonanceSelf-assembled multilayersAmplificationAtomic force microscopyEllipsometryGoldNanostructured materialsPolyamidesSelf assemblySpectroscopic analysisMultilayersWe present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics.Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_TognalliJ Chem Phys 2005;123(4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:25Zpaperaa:paper_00219606_v123_n4_p_TognalliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:26.534Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
title |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
spellingShingle |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers Tognalli, N. Electronic transition Gold nanoparticles Raman resonance Self-assembled multilayers Amplification Atomic force microscopy Ellipsometry Gold Nanostructured materials Polyamides Self assembly Spectroscopic analysis Multilayers |
title_short |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
title_full |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
title_fullStr |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
title_full_unstemmed |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
title_sort |
SERS in PAH-Os and gold nanoparticle self-assembled multilayers |
dc.creator.none.fl_str_mv |
Tognalli, N. Fainstein, A. Calvo, E. Bonazzola, C. Pietrasanta, L. Campoy-Quiles, M. Etchegoin, P. |
author |
Tognalli, N. |
author_facet |
Tognalli, N. Fainstein, A. Calvo, E. Bonazzola, C. Pietrasanta, L. Campoy-Quiles, M. Etchegoin, P. |
author_role |
author |
author2 |
Fainstein, A. Calvo, E. Bonazzola, C. Pietrasanta, L. Campoy-Quiles, M. Etchegoin, P. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Electronic transition Gold nanoparticles Raman resonance Self-assembled multilayers Amplification Atomic force microscopy Ellipsometry Gold Nanostructured materials Polyamides Self assembly Spectroscopic analysis Multilayers |
topic |
Electronic transition Gold nanoparticles Raman resonance Self-assembled multilayers Amplification Atomic force microscopy Ellipsometry Gold Nanostructured materials Polyamides Self assembly Spectroscopic analysis Multilayers |
dc.description.none.fl_txt_mv |
We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics. Fil:Calvo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bonazzola, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os (byp)2 ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+ (Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (∼530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples. © 2005 American Institute of Physics. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_Tognalli |
url |
http://hdl.handle.net/20.500.12110/paper_00219606_v123_n4_p_Tognalli |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J Chem Phys 2005;123(4) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1843608737861861376 |
score |
13.001348 |