Forbidden subgraphs and the König-Egerváry property

Autores
Bonomo, F.; Dourado, M.C.; Durán, G.; Faria, L.; Grippo, L.N.; Safe, M.D.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2013;161(16-17):2380-2388
Materia
Edge-perfect graphs
Forbidden subgraphs
König-Egerváry graphs
König-Egerváry property
Maximum matching
Edge-perfect graphs
Forbidden configurations
Forbidden subgraph characterizations
Forbidden subgraphs
Matching numbers
Maximum matchings
Perfect matchings
Transversal number
Characterization
Graphic methods
Graph theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v161_n16-17_p2380_Bonomo

id BDUBAFCEN_dd7774ae581f82b36bc4a7a5cea330b4
oai_identifier_str paperaa:paper_0166218X_v161_n16-17_p2380_Bonomo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Forbidden subgraphs and the König-Egerváry propertyBonomo, F.Dourado, M.C.Durán, G.Faria, L.Grippo, L.N.Safe, M.D.Edge-perfect graphsForbidden subgraphsKönig-Egerváry graphsKönig-Egerváry propertyMaximum matchingEdge-perfect graphsForbidden configurationsForbidden subgraph characterizationsForbidden subgraphsMatching numbersMaximum matchingsPerfect matchingsTransversal numberCharacterizationGraphic methodsGraph theoryThe matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_BonomoDiscrete Appl Math 2013;161(16-17):2380-2388reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:57Zpaperaa:paper_0166218X_v161_n16-17_p2380_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:58.803Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Forbidden subgraphs and the König-Egerváry property
title Forbidden subgraphs and the König-Egerváry property
spellingShingle Forbidden subgraphs and the König-Egerváry property
Bonomo, F.
Edge-perfect graphs
Forbidden subgraphs
König-Egerváry graphs
König-Egerváry property
Maximum matching
Edge-perfect graphs
Forbidden configurations
Forbidden subgraph characterizations
Forbidden subgraphs
Matching numbers
Maximum matchings
Perfect matchings
Transversal number
Characterization
Graphic methods
Graph theory
title_short Forbidden subgraphs and the König-Egerváry property
title_full Forbidden subgraphs and the König-Egerváry property
title_fullStr Forbidden subgraphs and the König-Egerváry property
title_full_unstemmed Forbidden subgraphs and the König-Egerváry property
title_sort Forbidden subgraphs and the König-Egerváry property
dc.creator.none.fl_str_mv Bonomo, F.
Dourado, M.C.
Durán, G.
Faria, L.
Grippo, L.N.
Safe, M.D.
author Bonomo, F.
author_facet Bonomo, F.
Dourado, M.C.
Durán, G.
Faria, L.
Grippo, L.N.
Safe, M.D.
author_role author
author2 Dourado, M.C.
Durán, G.
Faria, L.
Grippo, L.N.
Safe, M.D.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Edge-perfect graphs
Forbidden subgraphs
König-Egerváry graphs
König-Egerváry property
Maximum matching
Edge-perfect graphs
Forbidden configurations
Forbidden subgraph characterizations
Forbidden subgraphs
Matching numbers
Maximum matchings
Perfect matchings
Transversal number
Characterization
Graphic methods
Graph theory
topic Edge-perfect graphs
Forbidden subgraphs
König-Egerváry graphs
König-Egerváry property
Maximum matching
Edge-perfect graphs
Forbidden configurations
Forbidden subgraph characterizations
Forbidden subgraphs
Matching numbers
Maximum matchings
Perfect matchings
Transversal number
Characterization
Graphic methods
Graph theory
dc.description.none.fl_txt_mv The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_Bonomo
url http://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_Bonomo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2013;161(16-17):2380-2388
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735903571968
score 13.070432