Forbidden subgraphs and the König-Egerváry property
- Autores
- Bonomo, F.; Dourado, M.C.; Durán, G.; Faria, L.; Grippo, L.N.; Safe, M.D.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2013;161(16-17):2380-2388
- Materia
-
Edge-perfect graphs
Forbidden subgraphs
König-Egerváry graphs
König-Egerváry property
Maximum matching
Edge-perfect graphs
Forbidden configurations
Forbidden subgraph characterizations
Forbidden subgraphs
Matching numbers
Maximum matchings
Perfect matchings
Transversal number
Characterization
Graphic methods
Graph theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v161_n16-17_p2380_Bonomo
Ver los metadatos del registro completo
id |
BDUBAFCEN_dd7774ae581f82b36bc4a7a5cea330b4 |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v161_n16-17_p2380_Bonomo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Forbidden subgraphs and the König-Egerváry propertyBonomo, F.Dourado, M.C.Durán, G.Faria, L.Grippo, L.N.Safe, M.D.Edge-perfect graphsForbidden subgraphsKönig-Egerváry graphsKönig-Egerváry propertyMaximum matchingEdge-perfect graphsForbidden configurationsForbidden subgraph characterizationsForbidden subgraphsMatching numbersMaximum matchingsPerfect matchingsTransversal numberCharacterizationGraphic methodsGraph theoryThe matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_BonomoDiscrete Appl Math 2013;161(16-17):2380-2388reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:57Zpaperaa:paper_0166218X_v161_n16-17_p2380_BonomoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:58.803Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Forbidden subgraphs and the König-Egerváry property |
title |
Forbidden subgraphs and the König-Egerváry property |
spellingShingle |
Forbidden subgraphs and the König-Egerváry property Bonomo, F. Edge-perfect graphs Forbidden subgraphs König-Egerváry graphs König-Egerváry property Maximum matching Edge-perfect graphs Forbidden configurations Forbidden subgraph characterizations Forbidden subgraphs Matching numbers Maximum matchings Perfect matchings Transversal number Characterization Graphic methods Graph theory |
title_short |
Forbidden subgraphs and the König-Egerváry property |
title_full |
Forbidden subgraphs and the König-Egerváry property |
title_fullStr |
Forbidden subgraphs and the König-Egerváry property |
title_full_unstemmed |
Forbidden subgraphs and the König-Egerváry property |
title_sort |
Forbidden subgraphs and the König-Egerváry property |
dc.creator.none.fl_str_mv |
Bonomo, F. Dourado, M.C. Durán, G. Faria, L. Grippo, L.N. Safe, M.D. |
author |
Bonomo, F. |
author_facet |
Bonomo, F. Dourado, M.C. Durán, G. Faria, L. Grippo, L.N. Safe, M.D. |
author_role |
author |
author2 |
Dourado, M.C. Durán, G. Faria, L. Grippo, L.N. Safe, M.D. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Edge-perfect graphs Forbidden subgraphs König-Egerváry graphs König-Egerváry property Maximum matching Edge-perfect graphs Forbidden configurations Forbidden subgraph characterizations Forbidden subgraphs Matching numbers Maximum matchings Perfect matchings Transversal number Characterization Graphic methods Graph theory |
topic |
Edge-perfect graphs Forbidden subgraphs König-Egerváry graphs König-Egerváry property Maximum matching Edge-perfect graphs Forbidden configurations Forbidden subgraph characterizations Forbidden subgraphs Matching numbers Maximum matchings Perfect matchings Transversal number Characterization Graphic methods Graph theory |
dc.description.none.fl_txt_mv |
The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The matching number of a graph is the maximum size of a set of vertex-disjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen, and Peis proposed an extension of Lovász's result to a characterization of all graphs having the König-Egerváry property in terms of forbidden configurations (which are certain arrangements of a subgraph and a maximum matching). In this work, we prove a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs which is a strengthened version of the characterization by Korach et al. Using our characterization of graphs with the König-Egerváry property, we also prove a forbidden subgraph characterization for the class of edge-perfect graphs. © 2013 Elsevier B.V. All rights reserved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_Bonomo |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v161_n16-17_p2380_Bonomo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2013;161(16-17):2380-2388 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618735903571968 |
score |
13.070432 |