Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo

Autores
Mahmud, Z.; Pina, J.; Gagliardi, J.; Amelotti, F.; Gassa, L.; Míngolo, N.; Gordillo, G.
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
informe técnico
Estado
versión enviada
Descripción
El recubrimiento metálico de zinc aleado con otros metales como el níquel, tiene muy buena resistencia contra la corrosión. Se encontró que las microestructuras de los recubrimientos son de granos más finos con partículas y que la morfología depende de espesores de los recubrimientos. El tipo de partículas y la cantidad de las mismas en solución modifican su incorporación a la aleación aumentando la dureza y el contenido de níquel en la aleación. Se hicieron fotomicrografías en microscopio electrónico y óptico (en muestras vistas en corte con partículas). Se realizaron los diagramas de difracción de rayos X en muestras con recubrimiento de la aleación de Zn-Ni con y sin partículas sobre acero. Los depósitos se realizaron a partir de soluciones concentradas en ambos componentes, Zn y Ni a corriente constante, y a tiempos de deposición en aumento de 5 a 30 minutos, con el agregado de partículas a la solución. Se encontró que la microestructura cambia notablemente con el agregado de CSi o de Al2O3 a la aleación de Zn-Ni. Además con el agregado de partículas al recubrimiento, aumenta el porcentaje de Ni en el Zn-Ni, lo cual está relacionado con una mayor resistencia contra la corrosión. Los diagramas de difracción muestran que con el agregado de partículas de CSi se destaca una presencia importante de orientaciones preferenciales (330) en la fase γ, los cuales se incrementan con el tiempo de deposición. Asociado al incremento de textura en orientaciones (330), se incrementan además las tensiones residuales compresivas en los depósitos de Zn-Ni. Con el agregado de partículas de alúmina predomina el desarrollo de una fuerte textura asociada con las orientaciones (110) de la fase η, las cuales son predominantes a tiempos de deposición intermedios (t aprox. 10 minutos) y disminuyen notablemente a tiempos superiores. Sin el agregado de partículas y con el agregado de partículas de CSi o de Al2O3 , las orientaciones (101) asociadas a la fase Zn no muestran un desarrollo de textura u orientación preferencial. Las texturas medidas para muestras de varios micrones de espesor tienen valores con intensidades de texturas menores que en un espesor mayor en 10 micrones. Asimismo se encontró que para ese espesor de 10 micrones el material presenta mayor resistencia a la corrosión. Se midió la resistencia de Transferencia de Carga del material RTC en ohm por Impedancia en muestras de igual espesor en el espesor óptimo de 10 micrones es RTC para muestras producidas a 8Adm-2 durante 10 minutos de electrólisis. Los valores de RTC medidos son: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi sólo. Se midió RTC en función del espesor y se encontró que hay un espesor óptimo de 10 micrones a partir del cual aumenta el valor de RTC y disminuye la densidad de corriente de corrosión. En los ensayos de Niebla salina en muestras de igual espesor, se encontró que el porcentaje del área con corrosión blanca es menor para el Zn Ni con Al 2 O 3 respecto del área afectada en los otros casos. El principal aporte del trabajo está relacionado con el cambio de la microestructura y de texturas, según las partículas adicionadas al recubrimiento. Se debe tener en cuenta que en el material, en el caso de la adición de micropartículas de CSi o de Al2O3 se produce el cambio del porcentaje de níquel en la aleación, la dureza y del cambio de texturas.
The metallic coating of zinc alloyed with other metals such as nickel, has very good corrosion resistance. It was found that the type and quantity of particles, increases the hardness and the nickel content in the alloy. Photomicrographs were made in electronic and optical microscope (in samples with particle, sectional views). It has investigated the dependence of the percentage of Ni in the alloy and the addition of both types of particles, the applied current density , and composition of particles in the solution (20 to 60 g/l ). It has been found that the Ni contents is between 11 to 17 %, for applied current densities between 8 and 30 Adm-2. The microhardness values in the Zn-Ni are from 200 Hv and their values are increased to 400-500 Hv (Vickers) in the presence of particles. We have measured the resistance of the material in ohm by Impedance, being the ZnNi in the presence of particles: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi. The RTC value is according to the thickness coatings and we have found that there is an optimum thickness of 10 microns in which the value of RTC is increases and de corrosion current density decreases. In salt spray tests on samples with the same thickness, it was found that the area with white rust is lower for Zn Ni with Al2O3 on the affected area in other cases.
Fil: Mahmud, Z. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Pina, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Gagliardi, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Amelotti, F. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Gassa, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina.
Fil: Míngolo, N. Comisión Nacional de Energía Atómica; Argentina.
Fil: Gordillo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina.
Materia
Recubrimientos
electrodeposición de aleaciones
electrodeposición
resistencia contra la corrosión
partículas cerámicas
Zn Ni electrodeposition
coating alloys
corrosion resistance
ceramic particles
structural caracterization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
technicalreport:technicalreport_n00004

id BDUBAFCEN_d80146b11024ab376195c5a2e88835eb
oai_identifier_str technicalreport:technicalreport_n00004
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivoMahmud, Z.Pina, J.Gagliardi, J.Amelotti, F.Gassa, L.Míngolo, N.Gordillo, G.Recubrimientoselectrodeposición de aleacioneselectrodeposiciónresistencia contra la corrosiónpartículas cerámicasZn Ni electrodepositioncoating alloyscorrosion resistanceceramic particlesstructural caracterizationEl recubrimiento metálico de zinc aleado con otros metales como el níquel, tiene muy buena resistencia contra la corrosión. Se encontró que las microestructuras de los recubrimientos son de granos más finos con partículas y que la morfología depende de espesores de los recubrimientos. El tipo de partículas y la cantidad de las mismas en solución modifican su incorporación a la aleación aumentando la dureza y el contenido de níquel en la aleación. Se hicieron fotomicrografías en microscopio electrónico y óptico (en muestras vistas en corte con partículas). Se realizaron los diagramas de difracción de rayos X en muestras con recubrimiento de la aleación de Zn-Ni con y sin partículas sobre acero. Los depósitos se realizaron a partir de soluciones concentradas en ambos componentes, Zn y Ni a corriente constante, y a tiempos de deposición en aumento de 5 a 30 minutos, con el agregado de partículas a la solución. Se encontró que la microestructura cambia notablemente con el agregado de CSi o de Al2O3 a la aleación de Zn-Ni. Además con el agregado de partículas al recubrimiento, aumenta el porcentaje de Ni en el Zn-Ni, lo cual está relacionado con una mayor resistencia contra la corrosión. Los diagramas de difracción muestran que con el agregado de partículas de CSi se destaca una presencia importante de orientaciones preferenciales (330) en la fase γ, los cuales se incrementan con el tiempo de deposición. Asociado al incremento de textura en orientaciones (330), se incrementan además las tensiones residuales compresivas en los depósitos de Zn-Ni. Con el agregado de partículas de alúmina predomina el desarrollo de una fuerte textura asociada con las orientaciones (110) de la fase η, las cuales son predominantes a tiempos de deposición intermedios (t aprox. 10 minutos) y disminuyen notablemente a tiempos superiores. Sin el agregado de partículas y con el agregado de partículas de CSi o de Al2O3 , las orientaciones (101) asociadas a la fase Zn no muestran un desarrollo de textura u orientación preferencial. Las texturas medidas para muestras de varios micrones de espesor tienen valores con intensidades de texturas menores que en un espesor mayor en 10 micrones. Asimismo se encontró que para ese espesor de 10 micrones el material presenta mayor resistencia a la corrosión. Se midió la resistencia de Transferencia de Carga del material RTC en ohm por Impedancia en muestras de igual espesor en el espesor óptimo de 10 micrones es RTC para muestras producidas a 8Adm-2 durante 10 minutos de electrólisis. Los valores de RTC medidos son: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi sólo. Se midió RTC en función del espesor y se encontró que hay un espesor óptimo de 10 micrones a partir del cual aumenta el valor de RTC y disminuye la densidad de corriente de corrosión. En los ensayos de Niebla salina en muestras de igual espesor, se encontró que el porcentaje del área con corrosión blanca es menor para el Zn Ni con Al 2 O 3 respecto del área afectada en los otros casos. El principal aporte del trabajo está relacionado con el cambio de la microestructura y de texturas, según las partículas adicionadas al recubrimiento. Se debe tener en cuenta que en el material, en el caso de la adición de micropartículas de CSi o de Al2O3 se produce el cambio del porcentaje de níquel en la aleación, la dureza y del cambio de texturas.The metallic coating of zinc alloyed with other metals such as nickel, has very good corrosion resistance. It was found that the type and quantity of particles, increases the hardness and the nickel content in the alloy. Photomicrographs were made in electronic and optical microscope (in samples with particle, sectional views). It has investigated the dependence of the percentage of Ni in the alloy and the addition of both types of particles, the applied current density , and composition of particles in the solution (20 to 60 g/l ). It has been found that the Ni contents is between 11 to 17 %, for applied current densities between 8 and 30 Adm-2. The microhardness values in the Zn-Ni are from 200 Hv and their values are increased to 400-500 Hv (Vickers) in the presence of particles. We have measured the resistance of the material in ohm by Impedance, being the ZnNi in the presence of particles: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi. The RTC value is according to the thickness coatings and we have found that there is an optimum thickness of 10 microns in which the value of RTC is increases and de corrosion current density decreases. In salt spray tests on samples with the same thickness, it was found that the area with white rust is lower for Zn Ni with Al2O3 on the affected area in other cases.Fil: Mahmud, Z. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.Fil: Pina, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.Fil: Gagliardi, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.Fil: Amelotti, F. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.Fil: Gassa, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina.Fil: Míngolo, N. Comisión Nacional de Energía Atómica; Argentina.Fil: Gordillo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales2016-07info:eu-repo/semantics/reportinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_18ghinfo:ar-repo/semantics/informeTecnicoapplication/pdfhttp://hdl.handle.net/20.500.12110/technicalreport_n00004spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:40:24Ztechnicalreport:technicalreport_n00004Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:24.906Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
title Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
spellingShingle Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
Mahmud, Z.
Recubrimientos
electrodeposición de aleaciones
electrodeposición
resistencia contra la corrosión
partículas cerámicas
Zn Ni electrodeposition
coating alloys
corrosion resistance
ceramic particles
structural caracterization
title_short Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
title_full Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
title_fullStr Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
title_full_unstemmed Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
title_sort Efecto de las variables de operación en la resistencia a la corrosión en recubrimientos de aleaciones de Zinc Níquel con adiciones de partículas de CSi y Al2O3 y aditivo
dc.creator.none.fl_str_mv Mahmud, Z.
Pina, J.
Gagliardi, J.
Amelotti, F.
Gassa, L.
Míngolo, N.
Gordillo, G.
author Mahmud, Z.
author_facet Mahmud, Z.
Pina, J.
Gagliardi, J.
Amelotti, F.
Gassa, L.
Míngolo, N.
Gordillo, G.
author_role author
author2 Pina, J.
Gagliardi, J.
Amelotti, F.
Gassa, L.
Míngolo, N.
Gordillo, G.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Recubrimientos
electrodeposición de aleaciones
electrodeposición
resistencia contra la corrosión
partículas cerámicas
Zn Ni electrodeposition
coating alloys
corrosion resistance
ceramic particles
structural caracterization
topic Recubrimientos
electrodeposición de aleaciones
electrodeposición
resistencia contra la corrosión
partículas cerámicas
Zn Ni electrodeposition
coating alloys
corrosion resistance
ceramic particles
structural caracterization
dc.description.none.fl_txt_mv El recubrimiento metálico de zinc aleado con otros metales como el níquel, tiene muy buena resistencia contra la corrosión. Se encontró que las microestructuras de los recubrimientos son de granos más finos con partículas y que la morfología depende de espesores de los recubrimientos. El tipo de partículas y la cantidad de las mismas en solución modifican su incorporación a la aleación aumentando la dureza y el contenido de níquel en la aleación. Se hicieron fotomicrografías en microscopio electrónico y óptico (en muestras vistas en corte con partículas). Se realizaron los diagramas de difracción de rayos X en muestras con recubrimiento de la aleación de Zn-Ni con y sin partículas sobre acero. Los depósitos se realizaron a partir de soluciones concentradas en ambos componentes, Zn y Ni a corriente constante, y a tiempos de deposición en aumento de 5 a 30 minutos, con el agregado de partículas a la solución. Se encontró que la microestructura cambia notablemente con el agregado de CSi o de Al2O3 a la aleación de Zn-Ni. Además con el agregado de partículas al recubrimiento, aumenta el porcentaje de Ni en el Zn-Ni, lo cual está relacionado con una mayor resistencia contra la corrosión. Los diagramas de difracción muestran que con el agregado de partículas de CSi se destaca una presencia importante de orientaciones preferenciales (330) en la fase γ, los cuales se incrementan con el tiempo de deposición. Asociado al incremento de textura en orientaciones (330), se incrementan además las tensiones residuales compresivas en los depósitos de Zn-Ni. Con el agregado de partículas de alúmina predomina el desarrollo de una fuerte textura asociada con las orientaciones (110) de la fase η, las cuales son predominantes a tiempos de deposición intermedios (t aprox. 10 minutos) y disminuyen notablemente a tiempos superiores. Sin el agregado de partículas y con el agregado de partículas de CSi o de Al2O3 , las orientaciones (101) asociadas a la fase Zn no muestran un desarrollo de textura u orientación preferencial. Las texturas medidas para muestras de varios micrones de espesor tienen valores con intensidades de texturas menores que en un espesor mayor en 10 micrones. Asimismo se encontró que para ese espesor de 10 micrones el material presenta mayor resistencia a la corrosión. Se midió la resistencia de Transferencia de Carga del material RTC en ohm por Impedancia en muestras de igual espesor en el espesor óptimo de 10 micrones es RTC para muestras producidas a 8Adm-2 durante 10 minutos de electrólisis. Los valores de RTC medidos son: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi sólo. Se midió RTC en función del espesor y se encontró que hay un espesor óptimo de 10 micrones a partir del cual aumenta el valor de RTC y disminuye la densidad de corriente de corrosión. En los ensayos de Niebla salina en muestras de igual espesor, se encontró que el porcentaje del área con corrosión blanca es menor para el Zn Ni con Al 2 O 3 respecto del área afectada en los otros casos. El principal aporte del trabajo está relacionado con el cambio de la microestructura y de texturas, según las partículas adicionadas al recubrimiento. Se debe tener en cuenta que en el material, en el caso de la adición de micropartículas de CSi o de Al2O3 se produce el cambio del porcentaje de níquel en la aleación, la dureza y del cambio de texturas.
The metallic coating of zinc alloyed with other metals such as nickel, has very good corrosion resistance. It was found that the type and quantity of particles, increases the hardness and the nickel content in the alloy. Photomicrographs were made in electronic and optical microscope (in samples with particle, sectional views). It has investigated the dependence of the percentage of Ni in the alloy and the addition of both types of particles, the applied current density , and composition of particles in the solution (20 to 60 g/l ). It has been found that the Ni contents is between 11 to 17 %, for applied current densities between 8 and 30 Adm-2. The microhardness values in the Zn-Ni are from 200 Hv and their values are increased to 400-500 Hv (Vickers) in the presence of particles. We have measured the resistance of the material in ohm by Impedance, being the ZnNi in the presence of particles: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi. The RTC value is according to the thickness coatings and we have found that there is an optimum thickness of 10 microns in which the value of RTC is increases and de corrosion current density decreases. In salt spray tests on samples with the same thickness, it was found that the area with white rust is lower for Zn Ni with Al2O3 on the affected area in other cases.
Fil: Mahmud, Z. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Pina, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Gagliardi, J. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Amelotti, F. Instituto Nacional de Tecnología Industrial. Procesos Superficiales; Argentina.
Fil: Gassa, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina.
Fil: Míngolo, N. Comisión Nacional de Energía Atómica; Argentina.
Fil: Gordillo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina.
description El recubrimiento metálico de zinc aleado con otros metales como el níquel, tiene muy buena resistencia contra la corrosión. Se encontró que las microestructuras de los recubrimientos son de granos más finos con partículas y que la morfología depende de espesores de los recubrimientos. El tipo de partículas y la cantidad de las mismas en solución modifican su incorporación a la aleación aumentando la dureza y el contenido de níquel en la aleación. Se hicieron fotomicrografías en microscopio electrónico y óptico (en muestras vistas en corte con partículas). Se realizaron los diagramas de difracción de rayos X en muestras con recubrimiento de la aleación de Zn-Ni con y sin partículas sobre acero. Los depósitos se realizaron a partir de soluciones concentradas en ambos componentes, Zn y Ni a corriente constante, y a tiempos de deposición en aumento de 5 a 30 minutos, con el agregado de partículas a la solución. Se encontró que la microestructura cambia notablemente con el agregado de CSi o de Al2O3 a la aleación de Zn-Ni. Además con el agregado de partículas al recubrimiento, aumenta el porcentaje de Ni en el Zn-Ni, lo cual está relacionado con una mayor resistencia contra la corrosión. Los diagramas de difracción muestran que con el agregado de partículas de CSi se destaca una presencia importante de orientaciones preferenciales (330) en la fase γ, los cuales se incrementan con el tiempo de deposición. Asociado al incremento de textura en orientaciones (330), se incrementan además las tensiones residuales compresivas en los depósitos de Zn-Ni. Con el agregado de partículas de alúmina predomina el desarrollo de una fuerte textura asociada con las orientaciones (110) de la fase η, las cuales son predominantes a tiempos de deposición intermedios (t aprox. 10 minutos) y disminuyen notablemente a tiempos superiores. Sin el agregado de partículas y con el agregado de partículas de CSi o de Al2O3 , las orientaciones (101) asociadas a la fase Zn no muestran un desarrollo de textura u orientación preferencial. Las texturas medidas para muestras de varios micrones de espesor tienen valores con intensidades de texturas menores que en un espesor mayor en 10 micrones. Asimismo se encontró que para ese espesor de 10 micrones el material presenta mayor resistencia a la corrosión. Se midió la resistencia de Transferencia de Carga del material RTC en ohm por Impedancia en muestras de igual espesor en el espesor óptimo de 10 micrones es RTC para muestras producidas a 8Adm-2 durante 10 minutos de electrólisis. Los valores de RTC medidos son: RTC ZnNi + Al2O3 > RTC ZnNi + CSi > RTC ZnNi sólo. Se midió RTC en función del espesor y se encontró que hay un espesor óptimo de 10 micrones a partir del cual aumenta el valor de RTC y disminuye la densidad de corriente de corrosión. En los ensayos de Niebla salina en muestras de igual espesor, se encontró que el porcentaje del área con corrosión blanca es menor para el Zn Ni con Al 2 O 3 respecto del área afectada en los otros casos. El principal aporte del trabajo está relacionado con el cambio de la microestructura y de texturas, según las partículas adicionadas al recubrimiento. Se debe tener en cuenta que en el material, en el caso de la adición de micropartículas de CSi o de Al2O3 se produce el cambio del porcentaje de níquel en la aleación, la dureza y del cambio de texturas.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/report
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_18gh
info:ar-repo/semantics/informeTecnico
format report
status_str submittedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/technicalreport_n00004
url http://hdl.handle.net/20.500.12110/technicalreport_n00004
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618683602698240
score 13.070432