Hybrid sparse resultant matrices for bivariate polynomials
- Autores
- D'Andrea, C.; Emiris, I.Z.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices. © 2002 Elsevier Science Ltd. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2002;33(5):587-608
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v33_n5_p587_DAndrea
Ver los metadatos del registro completo
id |
BDUBAFCEN_c203308ea34b73517d70cfed3346f944 |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v33_n5_p587_DAndrea |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Hybrid sparse resultant matrices for bivariate polynomialsD'Andrea, C.Emiris, I.Z.We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices. © 2002 Elsevier Science Ltd. All rights reserved.Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v33_n5_p587_DAndreaJ. Symb. Comput. 2002;33(5):587-608reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_07477171_v33_n5_p587_DAndreaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.387Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Hybrid sparse resultant matrices for bivariate polynomials |
title |
Hybrid sparse resultant matrices for bivariate polynomials |
spellingShingle |
Hybrid sparse resultant matrices for bivariate polynomials D'Andrea, C. |
title_short |
Hybrid sparse resultant matrices for bivariate polynomials |
title_full |
Hybrid sparse resultant matrices for bivariate polynomials |
title_fullStr |
Hybrid sparse resultant matrices for bivariate polynomials |
title_full_unstemmed |
Hybrid sparse resultant matrices for bivariate polynomials |
title_sort |
Hybrid sparse resultant matrices for bivariate polynomials |
dc.creator.none.fl_str_mv |
D'Andrea, C. Emiris, I.Z. |
author |
D'Andrea, C. |
author_facet |
D'Andrea, C. Emiris, I.Z. |
author_role |
author |
author2 |
Emiris, I.Z. |
author2_role |
author |
dc.description.none.fl_txt_mv |
We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices. © 2002 Elsevier Science Ltd. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices. © 2002 Elsevier Science Ltd. All rights reserved. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v33_n5_p587_DAndrea |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v33_n5_p587_DAndrea |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2002;33(5):587-608 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740250968064 |
score |
13.070432 |