Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista
- Autores
- Ardenghi, Juan Sebastián
- Año de publicación
- 2011
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Castagnino, Mario Alberto
- Descripción
- La interpretación modal Hamiltoniana de la mecánica cuántica sostiene que los sistemas, en el ámbito de la realidad cuántica, son haces de propiedades posibles, sin sustancia subyacente. Las propiedades que se hacen actuales, es decir aquéllas que adquieren valor definido instante a instante, no pueden ser todas, ya que esto llevaría a inconsistencias, como lo muestra el Teorema de Kochen-Specker. Esto implica que debemos elegir un contexto de actualización, esto es, un subconjunto de todo el conjunto de propiedades posibles, cuyas propiedades adquieren valores definidos. En este sentido, la interpretación modal-Hamiltoniana elige como contexto de actualización la descomposición átomica del espacio de Hilbert en autosubespacios del Hamiltoniano y todas las composiciones de éstos. Esto permite explicar satifactoriamente varios problemas interpretativos de la mecánica cuántica: el problema de la medición, el problema de la contex- tualidad, el problema de la indistinguibilidad y el problema de la no-localidad, como también permite describir adecuadamente un conjunto de ejemplos físicos típicos de la práctica de la física. Durante el trabajo de esta tesis doctoral, se desarrolló una reformulación de la interpretación modal-Hamiltoniana de la mecánica cuántica. Para ello se aplicaron ideas de la teoría de grupos, con el fin de asegurar la invariancia del contexto de actualización ante el cambio de sistema de referencia. De modo natural, entonces, se definió el contexto de actualización como aquel identificado por los operadores de Casimir del grupo de simetría de la mecánica cuántica: el grupo de Galileo extendido centralmente. Posteriormente se estudió la posibilidad de extender estas ideas al ámbito de la teoría cuántica relativista, donde el grupo de simetría es el de Poincaré y algún otro grupo de simetría interna compacto. Finalmente, con el fin de asegurar que los observables con valores actuales en las teorías relativistas y no relativistas estuviesen correctamente relacionados a través de un límite adecuado, se empleó una contracción de Inönü-Wigner del grupo de Poincaré extendido trivialmente al grupo de Galileo extendido centralmente. De este modo, los operadores de Casimir de ambos grupos quedaron correctamente relacionados y se pudo definir la regla de actualización correspondiente al ámbito relativista
Fil: Ardenghi, Juan Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
HAMILTONIANO
INTERPRETACION
ACTUALIZACION
INVARIANCIA
SIMETRIA
HAMILTONIAN
INTERPRETATION
ACTUALIZATION
INVARIANCE
SYMMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n4951_Ardenghi
Ver los metadatos del registro completo
id |
BDUBAFCEN_bb4c7631773841be1e5a26015806e8e2 |
---|---|
oai_identifier_str |
tesis:tesis_n4951_Ardenghi |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativistaModal Hamiltonian interpretation in terms of group theory and its extension to relativistic quantum mechanicsArdenghi, Juan SebastiánHAMILTONIANOINTERPRETACIONACTUALIZACIONINVARIANCIASIMETRIAHAMILTONIANINTERPRETATIONACTUALIZATIONINVARIANCESYMMETRYLa interpretación modal Hamiltoniana de la mecánica cuántica sostiene que los sistemas, en el ámbito de la realidad cuántica, son haces de propiedades posibles, sin sustancia subyacente. Las propiedades que se hacen actuales, es decir aquéllas que adquieren valor definido instante a instante, no pueden ser todas, ya que esto llevaría a inconsistencias, como lo muestra el Teorema de Kochen-Specker. Esto implica que debemos elegir un contexto de actualización, esto es, un subconjunto de todo el conjunto de propiedades posibles, cuyas propiedades adquieren valores definidos. En este sentido, la interpretación modal-Hamiltoniana elige como contexto de actualización la descomposición átomica del espacio de Hilbert en autosubespacios del Hamiltoniano y todas las composiciones de éstos. Esto permite explicar satifactoriamente varios problemas interpretativos de la mecánica cuántica: el problema de la medición, el problema de la contex- tualidad, el problema de la indistinguibilidad y el problema de la no-localidad, como también permite describir adecuadamente un conjunto de ejemplos físicos típicos de la práctica de la física. Durante el trabajo de esta tesis doctoral, se desarrolló una reformulación de la interpretación modal-Hamiltoniana de la mecánica cuántica. Para ello se aplicaron ideas de la teoría de grupos, con el fin de asegurar la invariancia del contexto de actualización ante el cambio de sistema de referencia. De modo natural, entonces, se definió el contexto de actualización como aquel identificado por los operadores de Casimir del grupo de simetría de la mecánica cuántica: el grupo de Galileo extendido centralmente. Posteriormente se estudió la posibilidad de extender estas ideas al ámbito de la teoría cuántica relativista, donde el grupo de simetría es el de Poincaré y algún otro grupo de simetría interna compacto. Finalmente, con el fin de asegurar que los observables con valores actuales en las teorías relativistas y no relativistas estuviesen correctamente relacionados a través de un límite adecuado, se empleó una contracción de Inönü-Wigner del grupo de Poincaré extendido trivialmente al grupo de Galileo extendido centralmente. De este modo, los operadores de Casimir de ambos grupos quedaron correctamente relacionados y se pudo definir la regla de actualización correspondiente al ámbito relativistaFil: Ardenghi, Juan Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesCastagnino, Mario Alberto2011info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4951_Ardenghispainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:45:43Ztesis:tesis_n4951_ArdenghiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:45:44.458Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista Modal Hamiltonian interpretation in terms of group theory and its extension to relativistic quantum mechanics |
title |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
spellingShingle |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista Ardenghi, Juan Sebastián HAMILTONIANO INTERPRETACION ACTUALIZACION INVARIANCIA SIMETRIA HAMILTONIAN INTERPRETATION ACTUALIZATION INVARIANCE SYMMETRY |
title_short |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
title_full |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
title_fullStr |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
title_full_unstemmed |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
title_sort |
Interpretación Modal Hamiltoniana en términos de la teoría de grupos y su extensión a la mecánica cuántica relativista |
dc.creator.none.fl_str_mv |
Ardenghi, Juan Sebastián |
author |
Ardenghi, Juan Sebastián |
author_facet |
Ardenghi, Juan Sebastián |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castagnino, Mario Alberto |
dc.subject.none.fl_str_mv |
HAMILTONIANO INTERPRETACION ACTUALIZACION INVARIANCIA SIMETRIA HAMILTONIAN INTERPRETATION ACTUALIZATION INVARIANCE SYMMETRY |
topic |
HAMILTONIANO INTERPRETACION ACTUALIZACION INVARIANCIA SIMETRIA HAMILTONIAN INTERPRETATION ACTUALIZATION INVARIANCE SYMMETRY |
dc.description.none.fl_txt_mv |
La interpretación modal Hamiltoniana de la mecánica cuántica sostiene que los sistemas, en el ámbito de la realidad cuántica, son haces de propiedades posibles, sin sustancia subyacente. Las propiedades que se hacen actuales, es decir aquéllas que adquieren valor definido instante a instante, no pueden ser todas, ya que esto llevaría a inconsistencias, como lo muestra el Teorema de Kochen-Specker. Esto implica que debemos elegir un contexto de actualización, esto es, un subconjunto de todo el conjunto de propiedades posibles, cuyas propiedades adquieren valores definidos. En este sentido, la interpretación modal-Hamiltoniana elige como contexto de actualización la descomposición átomica del espacio de Hilbert en autosubespacios del Hamiltoniano y todas las composiciones de éstos. Esto permite explicar satifactoriamente varios problemas interpretativos de la mecánica cuántica: el problema de la medición, el problema de la contex- tualidad, el problema de la indistinguibilidad y el problema de la no-localidad, como también permite describir adecuadamente un conjunto de ejemplos físicos típicos de la práctica de la física. Durante el trabajo de esta tesis doctoral, se desarrolló una reformulación de la interpretación modal-Hamiltoniana de la mecánica cuántica. Para ello se aplicaron ideas de la teoría de grupos, con el fin de asegurar la invariancia del contexto de actualización ante el cambio de sistema de referencia. De modo natural, entonces, se definió el contexto de actualización como aquel identificado por los operadores de Casimir del grupo de simetría de la mecánica cuántica: el grupo de Galileo extendido centralmente. Posteriormente se estudió la posibilidad de extender estas ideas al ámbito de la teoría cuántica relativista, donde el grupo de simetría es el de Poincaré y algún otro grupo de simetría interna compacto. Finalmente, con el fin de asegurar que los observables con valores actuales en las teorías relativistas y no relativistas estuviesen correctamente relacionados a través de un límite adecuado, se empleó una contracción de Inönü-Wigner del grupo de Poincaré extendido trivialmente al grupo de Galileo extendido centralmente. De este modo, los operadores de Casimir de ambos grupos quedaron correctamente relacionados y se pudo definir la regla de actualización correspondiente al ámbito relativista Fil: Ardenghi, Juan Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
La interpretación modal Hamiltoniana de la mecánica cuántica sostiene que los sistemas, en el ámbito de la realidad cuántica, son haces de propiedades posibles, sin sustancia subyacente. Las propiedades que se hacen actuales, es decir aquéllas que adquieren valor definido instante a instante, no pueden ser todas, ya que esto llevaría a inconsistencias, como lo muestra el Teorema de Kochen-Specker. Esto implica que debemos elegir un contexto de actualización, esto es, un subconjunto de todo el conjunto de propiedades posibles, cuyas propiedades adquieren valores definidos. En este sentido, la interpretación modal-Hamiltoniana elige como contexto de actualización la descomposición átomica del espacio de Hilbert en autosubespacios del Hamiltoniano y todas las composiciones de éstos. Esto permite explicar satifactoriamente varios problemas interpretativos de la mecánica cuántica: el problema de la medición, el problema de la contex- tualidad, el problema de la indistinguibilidad y el problema de la no-localidad, como también permite describir adecuadamente un conjunto de ejemplos físicos típicos de la práctica de la física. Durante el trabajo de esta tesis doctoral, se desarrolló una reformulación de la interpretación modal-Hamiltoniana de la mecánica cuántica. Para ello se aplicaron ideas de la teoría de grupos, con el fin de asegurar la invariancia del contexto de actualización ante el cambio de sistema de referencia. De modo natural, entonces, se definió el contexto de actualización como aquel identificado por los operadores de Casimir del grupo de simetría de la mecánica cuántica: el grupo de Galileo extendido centralmente. Posteriormente se estudió la posibilidad de extender estas ideas al ámbito de la teoría cuántica relativista, donde el grupo de simetría es el de Poincaré y algún otro grupo de simetría interna compacto. Finalmente, con el fin de asegurar que los observables con valores actuales en las teorías relativistas y no relativistas estuviesen correctamente relacionados a través de un límite adecuado, se empleó una contracción de Inönü-Wigner del grupo de Poincaré extendido trivialmente al grupo de Galileo extendido centralmente. De este modo, los operadores de Casimir de ambos grupos quedaron correctamente relacionados y se pudo definir la regla de actualización correspondiente al ámbito relativista |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n4951_Ardenghi |
url |
https://hdl.handle.net/20.500.12110/tesis_n4951_Ardenghi |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340663779131392 |
score |
12.623145 |