Dirichlet and periodic-type boundary value problems for Painlevé II
- Autores
- Mariani, M.C.; Amster, P.; Rogers, C.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2002;265(1):1-11
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v265_n1_p1_Mariani
Ver los metadatos del registro completo
| id |
BDUBAFCEN_9ffb2a3a026a673a6d350c46d9a5cb05 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v265_n1_p1_Mariani |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Dirichlet and periodic-type boundary value problems for Painlevé IIMariani, M.C.Amster, P.Rogers, C.It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_MarianiJ. Math. Anal. Appl. 2002;265(1):1-11reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:25Zpaperaa:paper_0022247X_v265_n1_p1_MarianiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:26.877Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| title |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| spellingShingle |
Dirichlet and periodic-type boundary value problems for Painlevé II Mariani, M.C. |
| title_short |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| title_full |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| title_fullStr |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| title_full_unstemmed |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| title_sort |
Dirichlet and periodic-type boundary value problems for Painlevé II |
| dc.creator.none.fl_str_mv |
Mariani, M.C. Amster, P. Rogers, C. |
| author |
Mariani, M.C. |
| author_facet |
Mariani, M.C. Amster, P. Rogers, C. |
| author_role |
author |
| author2 |
Amster, P. Rogers, C. |
| author2_role |
author author |
| dc.description.none.fl_txt_mv |
It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2002;265(1):1-11 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784879698640896 |
| score |
12.982451 |