Dirichlet and periodic-type boundary value problems for Painlevé II

Autores
Mariani, M.C.; Amster, P.; Rogers, C.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2002;265(1):1-11
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v265_n1_p1_Mariani

id BDUBAFCEN_9ffb2a3a026a673a6d350c46d9a5cb05
oai_identifier_str paperaa:paper_0022247X_v265_n1_p1_Mariani
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Dirichlet and periodic-type boundary value problems for Painlevé IIMariani, M.C.Amster, P.Rogers, C.It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_MarianiJ. Math. Anal. Appl. 2002;265(1):1-11reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_0022247X_v265_n1_p1_MarianiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.952Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Dirichlet and periodic-type boundary value problems for Painlevé II
title Dirichlet and periodic-type boundary value problems for Painlevé II
spellingShingle Dirichlet and periodic-type boundary value problems for Painlevé II
Mariani, M.C.
title_short Dirichlet and periodic-type boundary value problems for Painlevé II
title_full Dirichlet and periodic-type boundary value problems for Painlevé II
title_fullStr Dirichlet and periodic-type boundary value problems for Painlevé II
title_full_unstemmed Dirichlet and periodic-type boundary value problems for Painlevé II
title_sort Dirichlet and periodic-type boundary value problems for Painlevé II
dc.creator.none.fl_str_mv Mariani, M.C.
Amster, P.
Rogers, C.
author Mariani, M.C.
author_facet Mariani, M.C.
Amster, P.
Rogers, C.
author_role author
author2 Amster, P.
Rogers, C.
author2_role author
author
dc.description.none.fl_txt_mv It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani
url http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2002;265(1):1-11
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737669373952
score 13.070432