Conformal invariance in three-dimensional rotating turbulence
- Autores
- Thalabard, S.; Rosenberg, D.; Pouquet, A.; Mininni, P.D.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys Rev Lett 2011;106(20)
- Materia
-
Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00319007_v106_n20_p_Thalabard
Ver los metadatos del registro completo
id |
BDUBAFCEN_9cd35d1a3511f8b8d938d354c2f973e2 |
---|---|
oai_identifier_str |
paperaa:paper_00319007_v106_n20_p_Thalabard |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Conformal invariance in three-dimensional rotating turbulenceThalabard, S.Rosenberg, D.Pouquet, A.Mininni, P.D.Brownian diffusivityConformal invarianceFluid turbulenceGrid pointsNodal curvesParallel componentReynoldsRossby numbersRotating turbulenceScaling propertiesSelf-similaritiesSmall scaleSolid-body rotationConformal mappingThree dimensionalTurbulenceRotationWe examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_ThalabardPhys Rev Lett 2011;106(20)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00319007_v106_n20_p_ThalabardInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.67Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Conformal invariance in three-dimensional rotating turbulence |
title |
Conformal invariance in three-dimensional rotating turbulence |
spellingShingle |
Conformal invariance in three-dimensional rotating turbulence Thalabard, S. Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation |
title_short |
Conformal invariance in three-dimensional rotating turbulence |
title_full |
Conformal invariance in three-dimensional rotating turbulence |
title_fullStr |
Conformal invariance in three-dimensional rotating turbulence |
title_full_unstemmed |
Conformal invariance in three-dimensional rotating turbulence |
title_sort |
Conformal invariance in three-dimensional rotating turbulence |
dc.creator.none.fl_str_mv |
Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. |
author |
Thalabard, S. |
author_facet |
Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. |
author_role |
author |
author2 |
Rosenberg, D. Pouquet, A. Mininni, P.D. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation |
topic |
Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation |
dc.description.none.fl_txt_mv |
We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard |
url |
http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys Rev Lett 2011;106(20) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738608898048 |
score |
13.070432 |