Conformal invariance in three-dimensional rotating turbulence

Autores
Thalabard, S.; Rosenberg, D.; Pouquet, A.; Mininni, P.D.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Rev Lett 2011;106(20)
Materia
Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00319007_v106_n20_p_Thalabard

id BDUBAFCEN_9cd35d1a3511f8b8d938d354c2f973e2
oai_identifier_str paperaa:paper_00319007_v106_n20_p_Thalabard
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Conformal invariance in three-dimensional rotating turbulenceThalabard, S.Rosenberg, D.Pouquet, A.Mininni, P.D.Brownian diffusivityConformal invarianceFluid turbulenceGrid pointsNodal curvesParallel componentReynoldsRossby numbersRotating turbulenceScaling propertiesSelf-similaritiesSmall scaleSolid-body rotationConformal mappingThree dimensionalTurbulenceRotationWe examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_ThalabardPhys Rev Lett 2011;106(20)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00319007_v106_n20_p_ThalabardInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.67Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Conformal invariance in three-dimensional rotating turbulence
title Conformal invariance in three-dimensional rotating turbulence
spellingShingle Conformal invariance in three-dimensional rotating turbulence
Thalabard, S.
Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
title_short Conformal invariance in three-dimensional rotating turbulence
title_full Conformal invariance in three-dimensional rotating turbulence
title_fullStr Conformal invariance in three-dimensional rotating turbulence
title_full_unstemmed Conformal invariance in three-dimensional rotating turbulence
title_sort Conformal invariance in three-dimensional rotating turbulence
dc.creator.none.fl_str_mv Thalabard, S.
Rosenberg, D.
Pouquet, A.
Mininni, P.D.
author Thalabard, S.
author_facet Thalabard, S.
Rosenberg, D.
Pouquet, A.
Mininni, P.D.
author_role author
author2 Rosenberg, D.
Pouquet, A.
Mininni, P.D.
author2_role author
author
author
dc.subject.none.fl_str_mv Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
topic Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
dc.description.none.fl_txt_mv We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
url http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Rev Lett 2011;106(20)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738608898048
score 13.070432