Model of the boundary layer of a vacuum-arc magnetic filter

Autores
Minotti, F.; Giuliani, L.; Grondona, D.; Della Torre, H.; Kelly, H.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.
Fil:Minotti, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Giuliani, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Grondona, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Kelly, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J Appl Phys 2013;113(11)
Materia
Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218979_v113_n11_p_Minotti

id BDUBAFCEN_96ab830c81b7c89525e34ce8d777fe9b
oai_identifier_str paperaa:paper_00218979_v113_n11_p_Minotti
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Model of the boundary layer of a vacuum-arc magnetic filterMinotti, F.Giuliani, L.Grondona, D.Della Torre, H.Kelly, H.Collision termCollisionalityDifferent-magnetic fieldsElectron massElectron momentum equationsFiltered arcMicroinstabilitiesBoundary layersCarrier concentrationElectron density measurementElectronsMagnetic filtersPoisson equationProbesWall functionA model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.Fil:Minotti, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Giuliani, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Grondona, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Kelly, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_MinottiJ Appl Phys 2013;113(11)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:02Zpaperaa:paper_00218979_v113_n11_p_MinottiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.199Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Model of the boundary layer of a vacuum-arc magnetic filter
title Model of the boundary layer of a vacuum-arc magnetic filter
spellingShingle Model of the boundary layer of a vacuum-arc magnetic filter
Minotti, F.
Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
title_short Model of the boundary layer of a vacuum-arc magnetic filter
title_full Model of the boundary layer of a vacuum-arc magnetic filter
title_fullStr Model of the boundary layer of a vacuum-arc magnetic filter
title_full_unstemmed Model of the boundary layer of a vacuum-arc magnetic filter
title_sort Model of the boundary layer of a vacuum-arc magnetic filter
dc.creator.none.fl_str_mv Minotti, F.
Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
author Minotti, F.
author_facet Minotti, F.
Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
author_role author
author2 Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
topic Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
dc.description.none.fl_txt_mv A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.
Fil:Minotti, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Giuliani, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Grondona, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Kelly, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_Minotti
url http://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_Minotti
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J Appl Phys 2013;113(11)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738055249920
score 13.070432