Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf

Autores
Bianchi, A.A.; Bianucci, L.; Piola, A.R.; Pino, D.R.; Schloss, I.; Poisson, A.; Balestrini, C.F.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.
Fil:Schloss, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Geophys. Res. C Oceans 2005;110(7):1-10
Materia
air-sea interaction
carbon dioxide
stratification
surface flux
Atlantic Ocean
oceanic regions
Patagonian Shelf
World
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_01480227_v110_n7_p1_Bianchi

id BDUBAFCEN_9258acbc76d2af98a1f9d5fcda769fee
oai_identifier_str paperaa:paper_01480227_v110_n7_p1_Bianchi
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Vertical stratification and air-sea CO2 fluxes in the Patagonian shelfBianchi, A.A.Bianucci, L.Piola, A.R.Pino, D.R.Schloss, I.Poisson, A.Balestrini, C.F.air-sea interactioncarbon dioxidestratificationsurface fluxAtlantic Oceanoceanic regionsPatagonian ShelfWorldThe thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.Fil:Schloss, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01480227_v110_n7_p1_BianchiJ. Geophys. Res. C Oceans 2005;110(7):1-10reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:51Zpaperaa:paper_01480227_v110_n7_p1_BianchiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.11Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
title Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
spellingShingle Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
Bianchi, A.A.
air-sea interaction
carbon dioxide
stratification
surface flux
Atlantic Ocean
oceanic regions
Patagonian Shelf
World
title_short Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
title_full Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
title_fullStr Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
title_full_unstemmed Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
title_sort Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf
dc.creator.none.fl_str_mv Bianchi, A.A.
Bianucci, L.
Piola, A.R.
Pino, D.R.
Schloss, I.
Poisson, A.
Balestrini, C.F.
author Bianchi, A.A.
author_facet Bianchi, A.A.
Bianucci, L.
Piola, A.R.
Pino, D.R.
Schloss, I.
Poisson, A.
Balestrini, C.F.
author_role author
author2 Bianucci, L.
Piola, A.R.
Pino, D.R.
Schloss, I.
Poisson, A.
Balestrini, C.F.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv air-sea interaction
carbon dioxide
stratification
surface flux
Atlantic Ocean
oceanic regions
Patagonian Shelf
World
topic air-sea interaction
carbon dioxide
stratification
surface flux
Atlantic Ocean
oceanic regions
Patagonian Shelf
World
dc.description.none.fl_txt_mv The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.
Fil:Schloss, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_01480227_v110_n7_p1_Bianchi
url http://hdl.handle.net/20.500.12110/paper_01480227_v110_n7_p1_Bianchi
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Geophys. Res. C Oceans 2005;110(7):1-10
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733670105088
score 13.070432