Non commutative truncated polynomial extensions

Autores
Guccione, J.A.; Guccione, J.J.; Valqui, C.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Pure Appl. Algebra 2012;216(11):2315-2337
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00224049_v216_n11_p2315_Guccione

id BDUBAFCEN_8df7667a227805129f81d331c55f92cc
oai_identifier_str paperaa:paper_00224049_v216_n11_p2315_Guccione
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Non commutative truncated polynomial extensionsGuccione, J.A.Guccione, J.J.Valqui, C.We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_GuccioneJ. Pure Appl. Algebra 2012;216(11):2315-2337reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_00224049_v216_n11_p2315_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:06.913Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Non commutative truncated polynomial extensions
title Non commutative truncated polynomial extensions
spellingShingle Non commutative truncated polynomial extensions
Guccione, J.A.
title_short Non commutative truncated polynomial extensions
title_full Non commutative truncated polynomial extensions
title_fullStr Non commutative truncated polynomial extensions
title_full_unstemmed Non commutative truncated polynomial extensions
title_sort Non commutative truncated polynomial extensions
dc.creator.none.fl_str_mv Guccione, J.A.
Guccione, J.J.
Valqui, C.
author Guccione, J.A.
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_role author
author2 Guccione, J.J.
Valqui, C.
author2_role author
author
dc.description.none.fl_txt_mv We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_Guccione
url http://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_Guccione
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Pure Appl. Algebra 2012;216(11):2315-2337
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738993725440
score 13.070432