Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discriminatio...

Autores
Alkorta, I.; Elguero, J.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The set of 1:1 and 2:1 complexes of XOOX′ (X, X′ H, CH 3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 108 V m -1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics.
Fil:Pagola, G.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J Chem Phys 2011;135(10)
Materia
Chiral discrimination
Hartree-fock
Homogeneous electric field
Isotropic medium
Lithium cations
Nuclear magnetic shieldings
Nuclear shielding
Chirality
Density functional theory
Enantiomers
Lithium
Magnetic field effects
Magnetic shielding
Magnetism
Nuclear magnetic resonance spectroscopy
Positive ions
Electric field effects
cation
lithium
organometallic compound
article
chemistry
conformation
electrochemical analysis
nuclear magnetic resonance spectroscopy
quantum theory
Cations
Electrochemical Techniques
Lithium
Magnetic Resonance Spectroscopy
Molecular Conformation
Organometallic Compounds
Quantum Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00219606_v135_n10_p_Alkorta

id BDUBAFCEN_8baa569858b37f444ffd3d54daa5575b
oai_identifier_str paperaa:paper_00219606_v135_n10_p_Alkorta
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discriminationAlkorta, I.Elguero, J.Provasi, P.F.Pagola, G.I.Ferraro, M.B.Chiral discriminationHartree-fockHomogeneous electric fieldIsotropic mediumLithium cationsNuclear magnetic shieldingsNuclear shieldingChiralityDensity functional theoryEnantiomersLithiumMagnetic field effectsMagnetic shieldingMagnetismNuclear magnetic resonance spectroscopyPositive ionsElectric field effectscationlithiumorganometallic compoundarticlechemistryconformationelectrochemical analysisnuclear magnetic resonance spectroscopyquantum theoryCationsElectrochemical TechniquesLithiumMagnetic Resonance SpectroscopyMolecular ConformationOrganometallic CompoundsQuantum TheoryThe set of 1:1 and 2:1 complexes of XOOX′ (X, X′ H, CH 3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 108 V m -1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics.Fil:Pagola, G.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219606_v135_n10_p_AlkortaJ Chem Phys 2011;135(10)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:43Zpaperaa:paper_00219606_v135_n10_p_AlkortaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:44.739Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
title Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
spellingShingle Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
Alkorta, I.
Chiral discrimination
Hartree-fock
Homogeneous electric field
Isotropic medium
Lithium cations
Nuclear magnetic shieldings
Nuclear shielding
Chirality
Density functional theory
Enantiomers
Lithium
Magnetic field effects
Magnetic shielding
Magnetism
Nuclear magnetic resonance spectroscopy
Positive ions
Electric field effects
cation
lithium
organometallic compound
article
chemistry
conformation
electrochemical analysis
nuclear magnetic resonance spectroscopy
quantum theory
Cations
Electrochemical Techniques
Lithium
Magnetic Resonance Spectroscopy
Molecular Conformation
Organometallic Compounds
Quantum Theory
title_short Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
title_full Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
title_fullStr Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
title_full_unstemmed Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
title_sort Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX′ (X, X′ H, CH3) with lithium cation and their chiral discrimination
dc.creator.none.fl_str_mv Alkorta, I.
Elguero, J.
Provasi, P.F.
Pagola, G.I.
Ferraro, M.B.
author Alkorta, I.
author_facet Alkorta, I.
Elguero, J.
Provasi, P.F.
Pagola, G.I.
Ferraro, M.B.
author_role author
author2 Elguero, J.
Provasi, P.F.
Pagola, G.I.
Ferraro, M.B.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Chiral discrimination
Hartree-fock
Homogeneous electric field
Isotropic medium
Lithium cations
Nuclear magnetic shieldings
Nuclear shielding
Chirality
Density functional theory
Enantiomers
Lithium
Magnetic field effects
Magnetic shielding
Magnetism
Nuclear magnetic resonance spectroscopy
Positive ions
Electric field effects
cation
lithium
organometallic compound
article
chemistry
conformation
electrochemical analysis
nuclear magnetic resonance spectroscopy
quantum theory
Cations
Electrochemical Techniques
Lithium
Magnetic Resonance Spectroscopy
Molecular Conformation
Organometallic Compounds
Quantum Theory
topic Chiral discrimination
Hartree-fock
Homogeneous electric field
Isotropic medium
Lithium cations
Nuclear magnetic shieldings
Nuclear shielding
Chirality
Density functional theory
Enantiomers
Lithium
Magnetic field effects
Magnetic shielding
Magnetism
Nuclear magnetic resonance spectroscopy
Positive ions
Electric field effects
cation
lithium
organometallic compound
article
chemistry
conformation
electrochemical analysis
nuclear magnetic resonance spectroscopy
quantum theory
Cations
Electrochemical Techniques
Lithium
Magnetic Resonance Spectroscopy
Molecular Conformation
Organometallic Compounds
Quantum Theory
dc.description.none.fl_txt_mv The set of 1:1 and 2:1 complexes of XOOX′ (X, X′ H, CH 3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 108 V m -1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics.
Fil:Pagola, G.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The set of 1:1 and 2:1 complexes of XOOX′ (X, X′ H, CH 3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 108 V m -1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00219606_v135_n10_p_Alkorta
url http://hdl.handle.net/20.500.12110/paper_00219606_v135_n10_p_Alkorta
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J Chem Phys 2011;135(10)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1848046093263175680
score 13.142177