Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?

Autores
Mpodozis, C.; Ramos, V.A.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Jurassic history of southern South America shows a complex geologic evolution which is the result of different processes that began along the western Gondwana margin during the initial stages of Pangea breakup. Andean subduction along the Pacific continental margin began in the Early Jurassic, after a period of continental-scale extension and rifting, which peaked by the end of the Triassic in central and northern Argentina and Chile. Renewal of subduction was the result of an episode of ocean growth along a series of spreading centers between North and South America when the separation of these continents began as a consequence of the activity of the Central Atlantic Magmatic Province hotspot. Motion along these spreading centers produced a component of oblique, SE-directed subduction along the western margin of South America and the reactivation of inherited orthogonal structural features as the N70°E trending Huincul ridge in the Neuquén Basin that was uplifted during Jurassic times. Subduction along the north-south trending Argentine-Chilean continental margin acelerated during the break-up between West and East Gondwana soon after the opening of the Indian Ocean, linked to the Karoo hot-spot. Subduction took place under extensional conditions probably associated with a negative trench roll-back, leading to the formation of a magmatic arc along the Coast Ranges from southern Peru to central Chile and, to the east, the Arequipa, Tarapacá and Neuquén extensional back-arc basins. In northern Patagonia, early Jurassic arc related magmatism occurred to the east of the present day Andean Cordillera along the short-lived (190-170 Ma) Subcordilleran Batholith and the associated Liassic intra arc basin. Arc magmatism ceased in northern Patagonia at ca 170 Ma to be replaced by huge volumes of Early to Middle Jurassic rhyolites and dacites of the Chon-Aike Large Igneous province produced as a result of crustal melting in an overheated crust during the initial stages of Gondwana breakup. Early rifting during Middle-Late Jurassic times took place in the Cañadón Asfalto Basin and the Late Jurassic Río Guenguel, Río Mayo and Río Senguerr basins, orthogonal to the continental margin as a consequence of the Weddell Sea opening. Acid magmatism was associated with widespread extension and culminated in the opening of the ocean-floored Rocas Verdes Basin. The causes of the cessation of magmatism in the Subcordilleran Batholith, the origin of the Chon Aike LIP and the rotation of the magmatic front towards the Patagonian Batholith around 150 Ma are still not well understood. Hypothesis linking this mutating tectonic scenario to the collision of exotic terranes against the Pacific margin of Patagonia during the early to middle Jurassic should be taken into consideration.
Fil:Ramos, V.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Rev. Asoc. Geol. Argent. 2008;63(4):481-497
Materia
Andes
Patagonia
Rifting
Subduction
Weddell Sea
backarc basin
collision zone
continental breakup
continental margin
extensional tectonics
formation mechanism
hot spot
Jurassic
large igneous province
rifting
spreading center
subduction
subduction zone
tectonic evolution
tectonic setting
trend analysis
uplift
Argentina
Chile
South America
Southern Ocean
Weddell Sea
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00044822_v63_n4_p481_Mpodozis

id BDUBAFCEN_80fd9f814daf8bd75fa094cf2e63f639
oai_identifier_str paperaa:paper_00044822_v63_n4_p481_Mpodozis
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions? Mpodozis, C.Ramos, V.A.AndesPatagoniaRiftingSubductionWeddell Seabackarc basincollision zonecontinental breakupcontinental marginextensional tectonicsformation mechanismhot spotJurassiclarge igneous provinceriftingspreading centersubductionsubduction zonetectonic evolutiontectonic settingtrend analysisupliftArgentinaChileSouth AmericaSouthern OceanWeddell SeaThe Jurassic history of southern South America shows a complex geologic evolution which is the result of different processes that began along the western Gondwana margin during the initial stages of Pangea breakup. Andean subduction along the Pacific continental margin began in the Early Jurassic, after a period of continental-scale extension and rifting, which peaked by the end of the Triassic in central and northern Argentina and Chile. Renewal of subduction was the result of an episode of ocean growth along a series of spreading centers between North and South America when the separation of these continents began as a consequence of the activity of the Central Atlantic Magmatic Province hotspot. Motion along these spreading centers produced a component of oblique, SE-directed subduction along the western margin of South America and the reactivation of inherited orthogonal structural features as the N70°E trending Huincul ridge in the Neuquén Basin that was uplifted during Jurassic times. Subduction along the north-south trending Argentine-Chilean continental margin acelerated during the break-up between West and East Gondwana soon after the opening of the Indian Ocean, linked to the Karoo hot-spot. Subduction took place under extensional conditions probably associated with a negative trench roll-back, leading to the formation of a magmatic arc along the Coast Ranges from southern Peru to central Chile and, to the east, the Arequipa, Tarapacá and Neuquén extensional back-arc basins. In northern Patagonia, early Jurassic arc related magmatism occurred to the east of the present day Andean Cordillera along the short-lived (190-170 Ma) Subcordilleran Batholith and the associated Liassic intra arc basin. Arc magmatism ceased in northern Patagonia at ca 170 Ma to be replaced by huge volumes of Early to Middle Jurassic rhyolites and dacites of the Chon-Aike Large Igneous province produced as a result of crustal melting in an overheated crust during the initial stages of Gondwana breakup. Early rifting during Middle-Late Jurassic times took place in the Cañadón Asfalto Basin and the Late Jurassic Río Guenguel, Río Mayo and Río Senguerr basins, orthogonal to the continental margin as a consequence of the Weddell Sea opening. Acid magmatism was associated with widespread extension and culminated in the opening of the ocean-floored Rocas Verdes Basin. The causes of the cessation of magmatism in the Subcordilleran Batholith, the origin of the Chon Aike LIP and the rotation of the magmatic front towards the Patagonian Batholith around 150 Ma are still not well understood. Hypothesis linking this mutating tectonic scenario to the collision of exotic terranes against the Pacific margin of Patagonia during the early to middle Jurassic should be taken into consideration.Fil:Ramos, V.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00044822_v63_n4_p481_MpodozisRev. Asoc. Geol. Argent. 2008;63(4):481-497reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-30T11:21:04Zpaperaa:paper_00044822_v63_n4_p481_MpodozisInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-30 11:21:05.617Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
title Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
spellingShingle Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
Mpodozis, C.
Andes
Patagonia
Rifting
Subduction
Weddell Sea
backarc basin
collision zone
continental breakup
continental margin
extensional tectonics
formation mechanism
hot spot
Jurassic
large igneous province
rifting
spreading center
subduction
subduction zone
tectonic evolution
tectonic setting
trend analysis
uplift
Argentina
Chile
South America
Southern Ocean
Weddell Sea
title_short Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
title_full Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
title_fullStr Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
title_full_unstemmed Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
title_sort Jurassic tectonics in Argentina and Chile: Extension, oblique subduction, rifting, drift and collisions?
dc.creator.none.fl_str_mv Mpodozis, C.
Ramos, V.A.
author Mpodozis, C.
author_facet Mpodozis, C.
Ramos, V.A.
author_role author
author2 Ramos, V.A.
author2_role author
dc.subject.none.fl_str_mv Andes
Patagonia
Rifting
Subduction
Weddell Sea
backarc basin
collision zone
continental breakup
continental margin
extensional tectonics
formation mechanism
hot spot
Jurassic
large igneous province
rifting
spreading center
subduction
subduction zone
tectonic evolution
tectonic setting
trend analysis
uplift
Argentina
Chile
South America
Southern Ocean
Weddell Sea
topic Andes
Patagonia
Rifting
Subduction
Weddell Sea
backarc basin
collision zone
continental breakup
continental margin
extensional tectonics
formation mechanism
hot spot
Jurassic
large igneous province
rifting
spreading center
subduction
subduction zone
tectonic evolution
tectonic setting
trend analysis
uplift
Argentina
Chile
South America
Southern Ocean
Weddell Sea
dc.description.none.fl_txt_mv The Jurassic history of southern South America shows a complex geologic evolution which is the result of different processes that began along the western Gondwana margin during the initial stages of Pangea breakup. Andean subduction along the Pacific continental margin began in the Early Jurassic, after a period of continental-scale extension and rifting, which peaked by the end of the Triassic in central and northern Argentina and Chile. Renewal of subduction was the result of an episode of ocean growth along a series of spreading centers between North and South America when the separation of these continents began as a consequence of the activity of the Central Atlantic Magmatic Province hotspot. Motion along these spreading centers produced a component of oblique, SE-directed subduction along the western margin of South America and the reactivation of inherited orthogonal structural features as the N70°E trending Huincul ridge in the Neuquén Basin that was uplifted during Jurassic times. Subduction along the north-south trending Argentine-Chilean continental margin acelerated during the break-up between West and East Gondwana soon after the opening of the Indian Ocean, linked to the Karoo hot-spot. Subduction took place under extensional conditions probably associated with a negative trench roll-back, leading to the formation of a magmatic arc along the Coast Ranges from southern Peru to central Chile and, to the east, the Arequipa, Tarapacá and Neuquén extensional back-arc basins. In northern Patagonia, early Jurassic arc related magmatism occurred to the east of the present day Andean Cordillera along the short-lived (190-170 Ma) Subcordilleran Batholith and the associated Liassic intra arc basin. Arc magmatism ceased in northern Patagonia at ca 170 Ma to be replaced by huge volumes of Early to Middle Jurassic rhyolites and dacites of the Chon-Aike Large Igneous province produced as a result of crustal melting in an overheated crust during the initial stages of Gondwana breakup. Early rifting during Middle-Late Jurassic times took place in the Cañadón Asfalto Basin and the Late Jurassic Río Guenguel, Río Mayo and Río Senguerr basins, orthogonal to the continental margin as a consequence of the Weddell Sea opening. Acid magmatism was associated with widespread extension and culminated in the opening of the ocean-floored Rocas Verdes Basin. The causes of the cessation of magmatism in the Subcordilleran Batholith, the origin of the Chon Aike LIP and the rotation of the magmatic front towards the Patagonian Batholith around 150 Ma are still not well understood. Hypothesis linking this mutating tectonic scenario to the collision of exotic terranes against the Pacific margin of Patagonia during the early to middle Jurassic should be taken into consideration.
Fil:Ramos, V.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The Jurassic history of southern South America shows a complex geologic evolution which is the result of different processes that began along the western Gondwana margin during the initial stages of Pangea breakup. Andean subduction along the Pacific continental margin began in the Early Jurassic, after a period of continental-scale extension and rifting, which peaked by the end of the Triassic in central and northern Argentina and Chile. Renewal of subduction was the result of an episode of ocean growth along a series of spreading centers between North and South America when the separation of these continents began as a consequence of the activity of the Central Atlantic Magmatic Province hotspot. Motion along these spreading centers produced a component of oblique, SE-directed subduction along the western margin of South America and the reactivation of inherited orthogonal structural features as the N70°E trending Huincul ridge in the Neuquén Basin that was uplifted during Jurassic times. Subduction along the north-south trending Argentine-Chilean continental margin acelerated during the break-up between West and East Gondwana soon after the opening of the Indian Ocean, linked to the Karoo hot-spot. Subduction took place under extensional conditions probably associated with a negative trench roll-back, leading to the formation of a magmatic arc along the Coast Ranges from southern Peru to central Chile and, to the east, the Arequipa, Tarapacá and Neuquén extensional back-arc basins. In northern Patagonia, early Jurassic arc related magmatism occurred to the east of the present day Andean Cordillera along the short-lived (190-170 Ma) Subcordilleran Batholith and the associated Liassic intra arc basin. Arc magmatism ceased in northern Patagonia at ca 170 Ma to be replaced by huge volumes of Early to Middle Jurassic rhyolites and dacites of the Chon-Aike Large Igneous province produced as a result of crustal melting in an overheated crust during the initial stages of Gondwana breakup. Early rifting during Middle-Late Jurassic times took place in the Cañadón Asfalto Basin and the Late Jurassic Río Guenguel, Río Mayo and Río Senguerr basins, orthogonal to the continental margin as a consequence of the Weddell Sea opening. Acid magmatism was associated with widespread extension and culminated in the opening of the ocean-floored Rocas Verdes Basin. The causes of the cessation of magmatism in the Subcordilleran Batholith, the origin of the Chon Aike LIP and the rotation of the magmatic front towards the Patagonian Batholith around 150 Ma are still not well understood. Hypothesis linking this mutating tectonic scenario to the collision of exotic terranes against the Pacific margin of Patagonia during the early to middle Jurassic should be taken into consideration.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00044822_v63_n4_p481_Mpodozis
url http://hdl.handle.net/20.500.12110/paper_00044822_v63_n4_p481_Mpodozis
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Rev. Asoc. Geol. Argent. 2008;63(4):481-497
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1847418761443803136
score 13.121305