Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia

Autores
Sciaini, G.; Fernández-Prini, R.; Estrin, D.A.; Marceca, E.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+ I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the N H3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+ I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+ I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+ I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+ I- ion pair, because in this case a tight solvation structure, formed by four N H3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+ I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters. © 2007 American Institute of Physics.
Fil:Sciaini, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Fernández-Prini, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Estrin, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marceca, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J Chem Phys 2007;126(17)
Materia
Ammonia
Charge transfer
Molecular dynamics
Phase transitions
Photons
Potassium
Solvents
Thermodynamics
Charge transfer to solvent (CTTS)
Electron detachment energies
Molecular dynamics trajectory
Photon absorption
Iodine
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00219606_v126_n17_p_Sciaini

id BDUBAFCEN_73e6468d3348701487aa081e4b9adba0
oai_identifier_str paperaa:paper_00219606_v126_n17_p_Sciaini
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammoniaSciaini, G.Fernández-Prini, R.Estrin, D.A.Marceca, E.AmmoniaCharge transferMolecular dynamicsPhase transitionsPhotonsPotassiumSolventsThermodynamicsCharge transfer to solvent (CTTS)Electron detachment energiesMolecular dynamics trajectoryPhoton absorptionIodineVertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+ I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the N H3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+ I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+ I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+ I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+ I- ion pair, because in this case a tight solvation structure, formed by four N H3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+ I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters. © 2007 American Institute of Physics.Fil:Sciaini, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Fernández-Prini, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Estrin, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marceca, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219606_v126_n17_p_SciainiJ Chem Phys 2007;126(17)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:14Zpaperaa:paper_00219606_v126_n17_p_SciainiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:16.172Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
title Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
spellingShingle Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
Sciaini, G.
Ammonia
Charge transfer
Molecular dynamics
Phase transitions
Photons
Potassium
Solvents
Thermodynamics
Charge transfer to solvent (CTTS)
Electron detachment energies
Molecular dynamics trajectory
Photon absorption
Iodine
title_short Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
title_full Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
title_fullStr Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
title_full_unstemmed Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
title_sort Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+ I- contact ion pair dissolved in supercritical ammonia
dc.creator.none.fl_str_mv Sciaini, G.
Fernández-Prini, R.
Estrin, D.A.
Marceca, E.
author Sciaini, G.
author_facet Sciaini, G.
Fernández-Prini, R.
Estrin, D.A.
Marceca, E.
author_role author
author2 Fernández-Prini, R.
Estrin, D.A.
Marceca, E.
author2_role author
author
author
dc.subject.none.fl_str_mv Ammonia
Charge transfer
Molecular dynamics
Phase transitions
Photons
Potassium
Solvents
Thermodynamics
Charge transfer to solvent (CTTS)
Electron detachment energies
Molecular dynamics trajectory
Photon absorption
Iodine
topic Ammonia
Charge transfer
Molecular dynamics
Phase transitions
Photons
Potassium
Solvents
Thermodynamics
Charge transfer to solvent (CTTS)
Electron detachment energies
Molecular dynamics trajectory
Photon absorption
Iodine
dc.description.none.fl_txt_mv Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+ I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the N H3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+ I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+ I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+ I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+ I- ion pair, because in this case a tight solvation structure, formed by four N H3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+ I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters. © 2007 American Institute of Physics.
Fil:Sciaini, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Fernández-Prini, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Estrin, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marceca, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+ I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the N H3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+ I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+ I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+ I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+ I- ion pair, because in this case a tight solvation structure, formed by four N H3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+ I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters. © 2007 American Institute of Physics.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00219606_v126_n17_p_Sciaini
url http://hdl.handle.net/20.500.12110/paper_00219606_v126_n17_p_Sciaini
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J Chem Phys 2007;126(17)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784875710906368
score 12.982451