Un método para alinear series temporales basado en características de la envolvente como punto de anclaje
- Autores
- Jarne, Cecilia Gisele; Alcain, Pablo Nicolás
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the eld of time series analysis, there is not a unique recipe for studying signal similarities. When having the repetition of a pattern, averaging different signals of the same nature could be complicated. Some times averaging is essential in the analysis of the data. Here we propose a method to align and average segments of time series with similar patterns. For this procedure, a simple implementation based on python code is provided. This analysis was inspired by the study of canary sound syllables, but it is possible to apply it in semi-periodic signals of different nature, not necessarily related to sounds
Fil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología (UNQ-CONICET). Buenos Aires. Argentina
Fil: Alcain, Pablo Nicolás. Universidad de Buenos Aires. Departamento de Física (UBA-FCEN). Buenos Aires. Argentina - Fuente
- An. (Asoc. Fís. Argent., En línea) 2019;03(30):68-71
- Materia
-
SIGNAL ALIGNMENT
TIME SERIES
AVERAGING
PYTHON CODE
OPEN SOURCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- afa:afa_v30_n03_p068
Ver los metadatos del registro completo
id |
BDUBAFCEN_62b777e48c4c3ce5b785d518ba938e06 |
---|---|
oai_identifier_str |
afa:afa_v30_n03_p068 |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Un método para alinear series temporales basado en características de la envolvente como punto de anclajeA method to align segments of time series based on envelope features as anchor pointsJarne, Cecilia GiseleAlcain, Pablo NicolásSIGNAL ALIGNMENTTIME SERIESAVERAGINGPYTHON CODEOPEN SOURCEIn the eld of time series analysis, there is not a unique recipe for studying signal similarities. When having the repetition of a pattern, averaging different signals of the same nature could be complicated. Some times averaging is essential in the analysis of the data. Here we propose a method to align and average segments of time series with similar patterns. For this procedure, a simple implementation based on python code is provided. This analysis was inspired by the study of canary sound syllables, but it is possible to apply it in semi-periodic signals of different nature, not necessarily related to soundsFil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología (UNQ-CONICET). Buenos Aires. ArgentinaFil: Alcain, Pablo Nicolás. Universidad de Buenos Aires. Departamento de Física (UBA-FCEN). Buenos Aires. ArgentinaAsociación Física Argentina2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://hdl.handle.net/20.500.12110/afa_v30_n03_p068An. (Asoc. Fís. Argent., En línea) 2019;03(30):68-71reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar2025-09-29T13:40:29Zafa:afa_v30_n03_p068Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:30.313Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje A method to align segments of time series based on envelope features as anchor points |
title |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
spellingShingle |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje Jarne, Cecilia Gisele SIGNAL ALIGNMENT TIME SERIES AVERAGING PYTHON CODE OPEN SOURCE |
title_short |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
title_full |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
title_fullStr |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
title_full_unstemmed |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
title_sort |
Un método para alinear series temporales basado en características de la envolvente como punto de anclaje |
dc.creator.none.fl_str_mv |
Jarne, Cecilia Gisele Alcain, Pablo Nicolás |
author |
Jarne, Cecilia Gisele |
author_facet |
Jarne, Cecilia Gisele Alcain, Pablo Nicolás |
author_role |
author |
author2 |
Alcain, Pablo Nicolás |
author2_role |
author |
dc.subject.none.fl_str_mv |
SIGNAL ALIGNMENT TIME SERIES AVERAGING PYTHON CODE OPEN SOURCE |
topic |
SIGNAL ALIGNMENT TIME SERIES AVERAGING PYTHON CODE OPEN SOURCE |
dc.description.none.fl_txt_mv |
In the eld of time series analysis, there is not a unique recipe for studying signal similarities. When having the repetition of a pattern, averaging different signals of the same nature could be complicated. Some times averaging is essential in the analysis of the data. Here we propose a method to align and average segments of time series with similar patterns. For this procedure, a simple implementation based on python code is provided. This analysis was inspired by the study of canary sound syllables, but it is possible to apply it in semi-periodic signals of different nature, not necessarily related to sounds Fil: Jarne, Cecilia Gisele. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología (UNQ-CONICET). Buenos Aires. Argentina Fil: Alcain, Pablo Nicolás. Universidad de Buenos Aires. Departamento de Física (UBA-FCEN). Buenos Aires. Argentina |
description |
In the eld of time series analysis, there is not a unique recipe for studying signal similarities. When having the repetition of a pattern, averaging different signals of the same nature could be complicated. Some times averaging is essential in the analysis of the data. Here we propose a method to align and average segments of time series with similar patterns. For this procedure, a simple implementation based on python code is provided. This analysis was inspired by the study of canary sound syllables, but it is possible to apply it in semi-periodic signals of different nature, not necessarily related to sounds |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/afa_v30_n03_p068 |
url |
https://hdl.handle.net/20.500.12110/afa_v30_n03_p068 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
An. (Asoc. Fís. Argent., En línea) 2019;03(30):68-71 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618686454824960 |
score |
13.070432 |