Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa
- Autores
- Calcagno, J.A.; Thatje, S.; Anger, K.; Lovrich, G.A.; Kaffenberger, A.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production.
Fil:Calcagno, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lovrich, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Mar. Ecol. Prog. Ser. 2003;257:189-196
- Materia
-
Cold adaptation
Crustacea
Decapoda
Larval development
Lecithotrophy
Subantarctic
biomass
chemical composition
crab
larval development
metamorphosis
Crustacea
Decapoda (Crustacea taxon)
Decapoda (Crustacea)
Invertebrata
Lithodidae
Lithodidae
Paralomis
Paralomis granulosa
Paralomis granulosa - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_01718630_v257_n_p189_Calcagno
Ver los metadatos del registro completo
id |
BDUBAFCEN_5423ff8252647941d539faf4627ba6c3 |
---|---|
oai_identifier_str |
paperaa:paper_01718630_v257_n_p189_Calcagno |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosaCalcagno, J.A.Thatje, S.Anger, K.Lovrich, G.A.Kaffenberger, A.Cold adaptationCrustaceaDecapodaLarval developmentLecithotrophySubantarcticbiomasschemical compositioncrablarval developmentmetamorphosisCrustaceaDecapoda (Crustacea taxon)Decapoda (Crustacea)InvertebrataLithodidaeLithodidaeParalomisParalomis granulosaParalomis granulosaChanges in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production.Fil:Calcagno, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lovrich, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_CalcagnoMar. Ecol. Prog. Ser. 2003;257:189-196reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:20Zpaperaa:paper_01718630_v257_n_p189_CalcagnoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:21.888Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
spellingShingle |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa Calcagno, J.A. Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa |
title_short |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_full |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_fullStr |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_full_unstemmed |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_sort |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
dc.creator.none.fl_str_mv |
Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. |
author |
Calcagno, J.A. |
author_facet |
Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. |
author_role |
author |
author2 |
Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa |
topic |
Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa |
dc.description.none.fl_txt_mv |
Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production. Fil:Calcagno, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lovrich, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_Calcagno |
url |
http://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_Calcagno |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Mar. Ecol. Prog. Ser. 2003;257:189-196 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142849787101184 |
score |
12.712165 |