Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data

Autores
Osman, K.T.; Wan, M.; Matthaeus, W.H.; Weygand, J.M.; Dasso, S.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society.
Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Rev Lett 2011;107(16)
Materia
Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00319007_v107_n16_p_Osman

id BDUBAFCEN_242801fb2a6f82304eca7b7256a0159a
oai_identifier_str paperaa:paper_00319007_v107_n16_p_Osman
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft dataOsman, K.T.Wan, M.Matthaeus, W.H.Weygand, J.M.Dasso, S.Direct determinationEnergy cascadeLinear scalingLow frequency limitsMagnetohydrodynamic turbulenceNon-adiabaticSolar-wind turbulenceStructure functionsThird-orderTwo-pointVelocity fieldAnisotropyHeatingMagnetic fieldsMagnetohydrodynamicsSolar windSpheresTurbulenceVelocitySolar energyThe first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society.Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_OsmanPhys Rev Lett 2011;107(16)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:55Zpaperaa:paper_00319007_v107_n16_p_OsmanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.444Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
spellingShingle Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
Osman, K.T.
Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
title_short Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_full Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_fullStr Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_full_unstemmed Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_sort Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
dc.creator.none.fl_str_mv Osman, K.T.
Wan, M.
Matthaeus, W.H.
Weygand, J.M.
Dasso, S.
author Osman, K.T.
author_facet Osman, K.T.
Wan, M.
Matthaeus, W.H.
Weygand, J.M.
Dasso, S.
author_role author
author2 Wan, M.
Matthaeus, W.H.
Weygand, J.M.
Dasso, S.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
topic Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
dc.description.none.fl_txt_mv The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society.
Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_Osman
url http://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_Osman
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Rev Lett 2011;107(16)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735490433024
score 13.070432