The formation of classical defects after a slow quantum phase transition

Autores
Rivers, R.J.; Lombardo, F.C.; Mazzitelli, F.D.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many phase transitions of quantum fields. We show a model in which the onset of classical probability distributions, for the long-wavelength modes at early times, allows the identification of line-zeroes of the field with vortex separation. We obtain a refined version of Kibble's causal results for defect separation, but from a completely different approach. It is apparent that vortices are not created from thermal fluctuations in the Ginzburg regime. © 2002 Elsevier Science B.V. All rights reserved.
Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Lett Sect B Nucl Elem Part High-Energy Phys 2002;539(1-2):1-7
Materia
article
model
phase transition
quantum mechanics
thermal analysis
waveform
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03702693_v539_n1-2_p1_Rivers

id BDUBAFCEN_1bb976c3578e7013e56e147fe5884583
oai_identifier_str paperaa:paper_03702693_v539_n1-2_p1_Rivers
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The formation of classical defects after a slow quantum phase transitionRivers, R.J.Lombardo, F.C.Mazzitelli, F.D.articlemodelphase transitionquantum mechanicsthermal analysiswaveformClassical defects (monopoles, vortices, etc.) are a characteristic consequence of many phase transitions of quantum fields. We show a model in which the onset of classical probability distributions, for the long-wavelength modes at early times, allows the identification of line-zeroes of the field with vortex separation. We obtain a refined version of Kibble's causal results for defect separation, but from a completely different approach. It is apparent that vortices are not created from thermal fluctuations in the Ginzburg regime. © 2002 Elsevier Science B.V. All rights reserved.Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03702693_v539_n1-2_p1_RiversPhys Lett Sect B Nucl Elem Part High-Energy Phys 2002;539(1-2):1-7reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:50Zpaperaa:paper_03702693_v539_n1-2_p1_RiversInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.842Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The formation of classical defects after a slow quantum phase transition
title The formation of classical defects after a slow quantum phase transition
spellingShingle The formation of classical defects after a slow quantum phase transition
Rivers, R.J.
article
model
phase transition
quantum mechanics
thermal analysis
waveform
title_short The formation of classical defects after a slow quantum phase transition
title_full The formation of classical defects after a slow quantum phase transition
title_fullStr The formation of classical defects after a slow quantum phase transition
title_full_unstemmed The formation of classical defects after a slow quantum phase transition
title_sort The formation of classical defects after a slow quantum phase transition
dc.creator.none.fl_str_mv Rivers, R.J.
Lombardo, F.C.
Mazzitelli, F.D.
author Rivers, R.J.
author_facet Rivers, R.J.
Lombardo, F.C.
Mazzitelli, F.D.
author_role author
author2 Lombardo, F.C.
Mazzitelli, F.D.
author2_role author
author
dc.subject.none.fl_str_mv article
model
phase transition
quantum mechanics
thermal analysis
waveform
topic article
model
phase transition
quantum mechanics
thermal analysis
waveform
dc.description.none.fl_txt_mv Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many phase transitions of quantum fields. We show a model in which the onset of classical probability distributions, for the long-wavelength modes at early times, allows the identification of line-zeroes of the field with vortex separation. We obtain a refined version of Kibble's causal results for defect separation, but from a completely different approach. It is apparent that vortices are not created from thermal fluctuations in the Ginzburg regime. © 2002 Elsevier Science B.V. All rights reserved.
Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many phase transitions of quantum fields. We show a model in which the onset of classical probability distributions, for the long-wavelength modes at early times, allows the identification of line-zeroes of the field with vortex separation. We obtain a refined version of Kibble's causal results for defect separation, but from a completely different approach. It is apparent that vortices are not created from thermal fluctuations in the Ginzburg regime. © 2002 Elsevier Science B.V. All rights reserved.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03702693_v539_n1-2_p1_Rivers
url http://hdl.handle.net/20.500.12110/paper_03702693_v539_n1-2_p1_Rivers
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Lett Sect B Nucl Elem Part High-Energy Phys 2002;539(1-2):1-7
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733280034816
score 13.070432