A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections

Autores
Dasso, S.; Gratton, F.T.; Farrugia, C.J.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Interplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 < 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.
Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, F.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Geophys. Res. A. Space Phys. 2003;108(A4)
Materia
Interplanetary coronal mass ejections
Ion-cyclotron instability
Kinetic instabilities
Magnetic clouds
Plasma waves
Thermal anisotropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_01480227_v108_nA4_p_Dasso

id BDUBAFCEN_1a26633b7e0503227186c66e69ab0f31
oai_identifier_str paperaa:paper_01480227_v108_nA4_p_Dasso
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejectionsDasso, S.Gratton, F.T.Farrugia, C.J.Interplanetary coronal mass ejectionsIon-cyclotron instabilityKinetic instabilitiesMagnetic cloudsPlasma wavesThermal anisotropyInterplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 &lt; 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gratton, F.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01480227_v108_nA4_p_DassoJ. Geophys. Res. A. Space Phys. 2003;108(A4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:02Zpaperaa:paper_01480227_v108_nA4_p_DassoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.223Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
title A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
spellingShingle A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
Dasso, S.
Interplanetary coronal mass ejections
Ion-cyclotron instability
Kinetic instabilities
Magnetic clouds
Plasma waves
Thermal anisotropy
title_short A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
title_full A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
title_fullStr A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
title_full_unstemmed A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
title_sort A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
dc.creator.none.fl_str_mv Dasso, S.
Gratton, F.T.
Farrugia, C.J.
author Dasso, S.
author_facet Dasso, S.
Gratton, F.T.
Farrugia, C.J.
author_role author
author2 Gratton, F.T.
Farrugia, C.J.
author2_role author
author
dc.subject.none.fl_str_mv Interplanetary coronal mass ejections
Ion-cyclotron instability
Kinetic instabilities
Magnetic clouds
Plasma waves
Thermal anisotropy
topic Interplanetary coronal mass ejections
Ion-cyclotron instability
Kinetic instabilities
Magnetic clouds
Plasma waves
Thermal anisotropy
dc.description.none.fl_txt_mv Interplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 &lt; 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.
Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, F.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Interplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 &lt; 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_01480227_v108_nA4_p_Dasso
url http://hdl.handle.net/20.500.12110/paper_01480227_v108_nA4_p_Dasso
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Geophys. Res. A. Space Phys. 2003;108(A4)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738069929984
score 13.070432