Spectral modeling of rotating turbulent flows
- Autores
- Baerenzung, J.; Mininni, P.D.; Pouquet, A.; Politano, H.; Ponty, Y.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys. Fluids 2010;22(2):1-13
- Materia
-
Counter rotating
Degree of anisotropy
Eddy viscosity
Eddy viscosity model
Energy spectra
Helicities
Isotropic models
Isotropic turbulence
Parametrizations
Rossby numbers
Scale properties
Small scale
Spectral modeling
Spectral models
Subgrid scale
Under-resolved DNS
Earth atmosphere
Internet protocols
Reynolds number
Rotation
Spectroscopy
Three dimensional
Turbulent flow
Viscosity
Rotating disks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10706631_v22_n2_p1_Baerenzung
Ver los metadatos del registro completo
id |
BDUBAFCEN_058132858879bfffad92f99e6300f42b |
---|---|
oai_identifier_str |
paperaa:paper_10706631_v22_n2_p1_Baerenzung |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Spectral modeling of rotating turbulent flowsBaerenzung, J.Mininni, P.D.Pouquet, A.Politano, H.Ponty, Y.Counter rotatingDegree of anisotropyEddy viscosityEddy viscosity modelEnergy spectraHelicitiesIsotropic modelsIsotropic turbulenceParametrizationsRossby numbersScale propertiesSmall scaleSpectral modelingSpectral modelsSubgrid scaleUnder-resolved DNSEarth atmosphereInternet protocolsReynolds numberRotationSpectroscopyThree dimensionalTurbulent flowViscosityRotating disksA subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_BaerenzungPhys. Fluids 2010;22(2):1-13reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_10706631_v22_n2_p1_BaerenzungInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.219Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Spectral modeling of rotating turbulent flows |
title |
Spectral modeling of rotating turbulent flows |
spellingShingle |
Spectral modeling of rotating turbulent flows Baerenzung, J. Counter rotating Degree of anisotropy Eddy viscosity Eddy viscosity model Energy spectra Helicities Isotropic models Isotropic turbulence Parametrizations Rossby numbers Scale properties Small scale Spectral modeling Spectral models Subgrid scale Under-resolved DNS Earth atmosphere Internet protocols Reynolds number Rotation Spectroscopy Three dimensional Turbulent flow Viscosity Rotating disks |
title_short |
Spectral modeling of rotating turbulent flows |
title_full |
Spectral modeling of rotating turbulent flows |
title_fullStr |
Spectral modeling of rotating turbulent flows |
title_full_unstemmed |
Spectral modeling of rotating turbulent flows |
title_sort |
Spectral modeling of rotating turbulent flows |
dc.creator.none.fl_str_mv |
Baerenzung, J. Mininni, P.D. Pouquet, A. Politano, H. Ponty, Y. |
author |
Baerenzung, J. |
author_facet |
Baerenzung, J. Mininni, P.D. Pouquet, A. Politano, H. Ponty, Y. |
author_role |
author |
author2 |
Mininni, P.D. Pouquet, A. Politano, H. Ponty, Y. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Counter rotating Degree of anisotropy Eddy viscosity Eddy viscosity model Energy spectra Helicities Isotropic models Isotropic turbulence Parametrizations Rossby numbers Scale properties Small scale Spectral modeling Spectral models Subgrid scale Under-resolved DNS Earth atmosphere Internet protocols Reynolds number Rotation Spectroscopy Three dimensional Turbulent flow Viscosity Rotating disks |
topic |
Counter rotating Degree of anisotropy Eddy viscosity Eddy viscosity model Energy spectra Helicities Isotropic models Isotropic turbulence Parametrizations Rossby numbers Scale properties Small scale Spectral modeling Spectral models Subgrid scale Under-resolved DNS Earth atmosphere Internet protocols Reynolds number Rotation Spectroscopy Three dimensional Turbulent flow Viscosity Rotating disks |
dc.description.none.fl_txt_mv |
A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_Baerenzung |
url |
http://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_Baerenzung |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys. Fluids 2010;22(2):1-13 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618736397451264 |
score |
13.070432 |