Spectral modeling of rotating turbulent flows

Autores
Baerenzung, J.; Mininni, P.D.; Pouquet, A.; Politano, H.; Ponty, Y.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys. Fluids 2010;22(2):1-13
Materia
Counter rotating
Degree of anisotropy
Eddy viscosity
Eddy viscosity model
Energy spectra
Helicities
Isotropic models
Isotropic turbulence
Parametrizations
Rossby numbers
Scale properties
Small scale
Spectral modeling
Spectral models
Subgrid scale
Under-resolved DNS
Earth atmosphere
Internet protocols
Reynolds number
Rotation
Spectroscopy
Three dimensional
Turbulent flow
Viscosity
Rotating disks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10706631_v22_n2_p1_Baerenzung

id BDUBAFCEN_058132858879bfffad92f99e6300f42b
oai_identifier_str paperaa:paper_10706631_v22_n2_p1_Baerenzung
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Spectral modeling of rotating turbulent flowsBaerenzung, J.Mininni, P.D.Pouquet, A.Politano, H.Ponty, Y.Counter rotatingDegree of anisotropyEddy viscosityEddy viscosity modelEnergy spectraHelicitiesIsotropic modelsIsotropic turbulenceParametrizationsRossby numbersScale propertiesSmall scaleSpectral modelingSpectral modelsSubgrid scaleUnder-resolved DNSEarth atmosphereInternet protocolsReynolds numberRotationSpectroscopyThree dimensionalTurbulent flowViscosityRotating disksA subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_BaerenzungPhys. Fluids 2010;22(2):1-13reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_10706631_v22_n2_p1_BaerenzungInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.219Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Spectral modeling of rotating turbulent flows
title Spectral modeling of rotating turbulent flows
spellingShingle Spectral modeling of rotating turbulent flows
Baerenzung, J.
Counter rotating
Degree of anisotropy
Eddy viscosity
Eddy viscosity model
Energy spectra
Helicities
Isotropic models
Isotropic turbulence
Parametrizations
Rossby numbers
Scale properties
Small scale
Spectral modeling
Spectral models
Subgrid scale
Under-resolved DNS
Earth atmosphere
Internet protocols
Reynolds number
Rotation
Spectroscopy
Three dimensional
Turbulent flow
Viscosity
Rotating disks
title_short Spectral modeling of rotating turbulent flows
title_full Spectral modeling of rotating turbulent flows
title_fullStr Spectral modeling of rotating turbulent flows
title_full_unstemmed Spectral modeling of rotating turbulent flows
title_sort Spectral modeling of rotating turbulent flows
dc.creator.none.fl_str_mv Baerenzung, J.
Mininni, P.D.
Pouquet, A.
Politano, H.
Ponty, Y.
author Baerenzung, J.
author_facet Baerenzung, J.
Mininni, P.D.
Pouquet, A.
Politano, H.
Ponty, Y.
author_role author
author2 Mininni, P.D.
Pouquet, A.
Politano, H.
Ponty, Y.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Counter rotating
Degree of anisotropy
Eddy viscosity
Eddy viscosity model
Energy spectra
Helicities
Isotropic models
Isotropic turbulence
Parametrizations
Rossby numbers
Scale properties
Small scale
Spectral modeling
Spectral models
Subgrid scale
Under-resolved DNS
Earth atmosphere
Internet protocols
Reynolds number
Rotation
Spectroscopy
Three dimensional
Turbulent flow
Viscosity
Rotating disks
topic Counter rotating
Degree of anisotropy
Eddy viscosity
Eddy viscosity model
Energy spectra
Helicities
Isotropic models
Isotropic turbulence
Parametrizations
Rossby numbers
Scale properties
Small scale
Spectral modeling
Spectral models
Subgrid scale
Under-resolved DNS
Earth atmosphere
Internet protocols
Reynolds number
Rotation
Spectroscopy
Three dimensional
Turbulent flow
Viscosity
Rotating disks
dc.description.none.fl_txt_mv A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs). The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number. The model, developed previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E77, 046303 (2008)], incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~104 and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci.38, 2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_Baerenzung
url http://hdl.handle.net/20.500.12110/paper_10706631_v22_n2_p1_Baerenzung
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys. Fluids 2010;22(2):1-13
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618736397451264
score 13.070432