**Abstract:**

Herein a quasi-two dimensional horizontal hydro-morphological mathematical model is presented. The governing equations for the quasi-2D horizontal time-depending flow field are represented by the well-known approach of interconnected cells. New discharge laws between cells are incorporated. The model is capable of predicting temporal changes in water depth, velocity distribution, sediment transport, bed level, as well as water and suspended sediment exchange between main stream and flood plains. An application of the model in the middle reach of the Argentinean Paraná river is presented. Satisfactory results were obtained during model calibration, validation and application.

Universidad Nacional de Rosario

**Repository:** RepHipUNR (UNR). Universidad Nacional de Rosario

**Authors**:
Christen, Alejandra; Escarate, Pedro; Cure, Michel; Rial, Diego Fernando; Cassetti, Julia Analía

**Publication Date:** 2016.

**Language:** English.

**Abstract:**

Aims. Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin i, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods. After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results. This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions. Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin i data directly without the need for any convergence criteria.

**Author affiliation**: Christen, Alejandra. Pontificia Universidad Católica de Valparaíso; Chile

**Author affiliation**: Escarate, Pedro. University of Arizona; Estados Unidos. Universidad Técnica Federico Santa María; Chile

**Author affiliation**: Cure, Michel. Universidad de Valparaiso; Chile

**Author affiliation**: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina

**Author affiliation**: Cassetti, Julia Analía. Universidad Nacional de General Sarmiento; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Abstract:**

Context. A magnetic cloud (MC) is a magnetic flux rope in the solar wind (SW), Which, at 1 AU, is observed ∼2–5 days after its expulsion from the Sun. The associated solar eruption is observed as a coronal mass ejection (CME). Aims. Both the in situ observations of plasma velocity distribution and the increase in their size with solar distance demonstrate that MCs are strongly expanding structures. The aim of this work is to find the main causes of this expansion and to derive a model to explain the plasma velocity profiles typically observed inside MCs. Methods. We model the flux rope evolution as a series of force-free field states with two extreme limits: (a) ideal magnetohydrodynamics (MHD) and (b) minimization of the magnetic energy with conserved magnetic helicity. We consider cylindrical flux ropes to reduce the problem to the integration of ordinary differential equations. This allows us to explore a wide variety of magnetic fields at a broad range of distances to the Sun. Results. We demonstrate that the rapid decrease in the total SW pressure with solar distance is the main driver of the flux-rope radial expansion. Other effects, such as the internal over-pressure, the radial distribution, and the amount of twist within the flux rope have a much weaker influence on the expansion. We demonstrate that any force-free flux rope will have a self-similar expansion if its total boundary pressure evolves as the inverse of its length to the fourth power. With the total pressure gradient observed in the SW, the radial expansion of flux ropes is close to self-similar with a nearly linear radial velocity profile across the flux rope, as observed. Moreover, we show that the expansion rate is proportional to the radius and to the global velocity away from the Sun. Conclusions. The simple and universal law found for the radial expansion of flux ropes in the SW predicts the typical size, magnetic structure, and radial velocity of MCs at various solar distances.

**Author affiliation**: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia

**Author affiliation**: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2009.

**Language:** English.

**Abstract:**

Context. A magnetic cloud (MC) is a magnetic flux rope in the solar wind (SW), which, at 1 AU, is observed ∼2-5 days after its expulsion from the Sun. The associated solar eruption is observed as a coronal mass ejection (CME).Aims. Both the in situ observations of plasma velocity distribution and the increase in their size with solar distance demonstrate that MCs are strongly expanding structures. The aim of this work is to find the main causes of this expansion and to derive a model to explain the plasma velocity profiles typically observed inside MCs.Methods. We model the flux rope evolution as a series of force-free field states with two extreme limits: (a) ideal magneto-hydrodynamics (MHD) and (b) minimization of the magnetic energy with conserved magnetic helicity. We consider cylindrical flux ropes to reduce the problem to the integration of ordinary differential equations. This allows us to explore a wide variety of magnetic fields at a broad range of distances to the Sun.Results. We demonstrate that the rapid decrease in the total SW pressure with solar distance is the main driver of the flux-rope radial expansion. Other effects, such as the internal over-pressure, the radial distribution, and the amount of twist within the flux rope have a much weaker influence on the expansion. We demonstrate that any force-free flux rope will have a self-similar expansion if its total boundary pressure evolves as the inverse of its length to the fourth power. With the total pressure gradient observed in the SW, the radial expansion of flux ropes is close to self-similar with a nearly linear radial velocity profile across the flux rope, as observed. Moreover, we show that the expansion rate is proportional to the radius and to the global velocity away from the Sun.Conclusions. The simple and universal law found for the radial expansion of flux ropes in the SW predicts the typical size, magnetic structure, and radial velocity of MCs at various solar distances. © 2009 ESO.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Boundary pressure; Coronal mass ejection; Cylindrical flux ropes; Expansion rate; Flux ropes; Force free fields; In-situ observations; interplanetary medium; Magnetic clouds; Magnetic energies; Magnetic flux ropes; Magnetic helicity; Plasma velocity; Radial distributions; Radial expansions; Radial velocity; Self-similar; Solar eruption; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Astrophysics; Boundary layer flow; Energy conservation; Expansion; Fluid dynamics; Magnetic fields; Magnetic flux; Magnetic structure; Magnetohydrodynamics; Ordinary differential equations; Pressure gradient; Solar wind; Sun; Velocity; Velocity distribution; Solar energy.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Authors**:
Perlo, Josefina; Silletta, Emilia Victoria; Danieli, Ernesto Pablo; Cattaneo, Giorgio; Acosta, Rodolfo Héctor; Blümich, Bernhard; Casanova, Federico Martin

**Publication Date:** 2015.

**Language:** English.

**Abstract:**

In this work we evaluate the performance of a 40-mm diameter bore 0.2T desktop Halbach tomograph to obtain 2D and 3D velocity maps for studying intra-aneurismal flow in the presence or absence of nitinol meshed implants with the aim of optimizing the flow diverter efficacy. Phantoms with known spatial velocity distribution were used to determine the performance of the MRI system. Maximum velocities of about 200mm/s could be measured with a precision of 1% at a spatial resolution of 0.5×0.5×1mm3. This accuracy is suitable to evaluate in vitro intra-aneurismal flow under different conditions such as variable flow rates, different vessel-aneurysm geometry, as well as the influence of metallic flow diverters on the intra-aneurismal flow distribution. The information obtained non-invasively with desktop tomographs can be used to complement in vivo studies in order to decide the optimum flow diverter.

**Author affiliation**: Perlo, Josefina. Rwth Aachen University; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

**Author affiliation**: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina

**Author affiliation**: Danieli, Ernesto Pablo. Rwth Aachen University; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

**Author affiliation**: Cattaneo, Giorgio. Acandis; Alemania

**Author affiliation**: Acosta, Rodolfo Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina

**Author affiliation**: Blümich, Bernhard. Rwth Aachen University; Alemania

**Author affiliation**: Casanova, Federico Martin. Magritek; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Authors**:
Lima, R. Santos; Pino, E. M. de Gouveia Dal; Falceta Gonçalves, D. A.; Nakwacki, Maria Soledad; Kowal, G.

**Publication Date:** 2017.

**Language:** English.

**Abstract:**

Statistical analysis of Faraday rotation measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large-scale motions and the conservation of the magnetic moment of the charged particles. A previous study (Paper I) analysed the impact of large-scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model that considered a tensor pressure with uniform anisotropy. In this work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. We also consider the effect of anisotropy relaxation caused by the microscale mirror and firehose instabilities. We show that if the relaxation rate is fast enough to keep the anisotropy limited by the threshold values of the instabilities, the dispersion and power spectrum of the RM maps are indistinguishable from those obtained from collisional MHD. Otherwise, there is a reduction in the dispersion and steepening of the power spectrum of the RM maps (compared to the collisional case). Considering the first scenario, the use of collisional MHD simulations for modelling the RM statistics in the ICM becomes better justified.

**Author affiliation**: Lima, R. Santos. Universidade de Sao Paulo; Brasil

**Author affiliation**: Pino, E. M. de Gouveia Dal. Universidade de Sao Paulo; Brasil

**Author affiliation**: Falceta Gonçalves, D. A.. Universidade de Sao Paulo; Brasil

**Author affiliation**: Nakwacki, Maria Soledad. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina

**Author affiliation**: Kowal, G.. Universidade Cruzeiro Do Sul; . Universidade de Sao Paulo; Brasil

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2012.

**Language:** English.

**Abstract:**

Using a granular-mechanics code, we study the impact of a sphere into a porous adhesive granular target, consisting of monodisperse silica grains. The model includes elastic repulsive, adhesive, and dissipative forces, as well as sliding, rolling, and twisting friction. Impact velocities of up to 30 m/s and target filling factors (densities) between 19% and 35% have been systematically studied. We find that the projectile is stopped by an effective drag force which is proportional to the square of its velocity. Target adhesion influences projectile stopping only below a critical velocity, which increases with adhesion. The penetration depth depends approximately logarithmically on the impact velocity and is inversely proportional to the target density. The excavated crater is of conical form and is surrounded by a compaction zone whose width increases but whose maximum value decreases with increasing target density. Grain ejection increases in proportion with impactor velocity. Grains are ejected which have originally been buried to a depth of 8Rgrain below the surface; the angular distribution favors oblique ejection with a maximum around 45◦. The velocity distribution of ejected grains features a broad low-velocity maximum around 0.5–1 m/s but exhibits a high-velocity tail up to ∼15% of the projectile impact velocity.

**Author affiliation**: Ringl, Christian. Universität Kaiserslautern; Alemania

**Author affiliation**: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina

**Author affiliation**: Urbassek, Herbert M.. Universität Kaiserslautern; Alemania

**Keywords:**
GRAINS; CRATERS; Astronomía; Ciencias Físicas; CIENCIAS NATURALES Y EXACTAS.

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2012.

**Language:** English.

**Abstract:**

The dark matter (DM) halos of field elliptical galaxies have not been well-studied and their properties appear controversial in the literature. While some galaxies appear to be nearly devoid of DM, others show clear evidence of its presence. Furthermore, modified Newtonian dynamics (MOND), which has been found to have predictive power in the domain of disk galaxies, has not yet been investigated for isolated elliptical galaxies. We study the kinematics of the isolated elliptical NGC 7507, which has been claimed as a clear example of DM presence in early-type galaxies. We obtained major and minor axis long-slit spectroscopy of NGC 7507 using the Gemini South telescope and deep imaging in Kron-Cousins R and Washington C using the CTIO/MOSAIC camera. Mean velocities, velocity dispersion and higher order moments of the velocity distribution are measured out to ∼90 . The galaxy, although almost circular, has significant rotation along the minor axis and a rapidly declining velocity dispersion along both axes. The velocity dispersion profile is modeled in the context of a spherical Jeans analysis. Models without DM provide an excellent representation of the data with a mass-to-light ratio (M/L) of 3.1 (R-band). The most massive Navarro-Frenk-White (NFW) halo the data allow has a virial mass of only 3.9+3.1 −2.1 × 1011 M , although the data are more consistent with models that have a slight radial anisotropy, which implies the galaxy has an even lower DM halo mass of 2.2+2.0 −1.2 × 1011 M . Modeling of the h4 Gauss-Hermite coefficient is inconclusive but seems to be consistent with mild radial anisotropy. A cored logarithmic DM halo with parameters r0 = 7 kpc and v0 = 100 km s−1 can also reproduce the observed velocity dispersion profile. The MOND predictions overestimate the velocity dispersion. In conclusion, we cannot easily reproduce the previous findings of a predominance of DM in NGC 7507 within a simple spherical model. DM may be present, but only in conjunction with a strong radial anisotropy, for which there are some indications.

**Author affiliation**: Salinas, R.. Universidad de Concepción; Chile. European Southern Observatory; Chile

**Author affiliation**: Richtler, T.. Universidad de Concepción; Chile

**Author affiliation**: Bassino, Lilia Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Astrofísica de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina

**Author affiliation**: Romanowsky, A. J.. California State University; Estados Unidos

**Author affiliation**: Schuberth, Y.. Universitaet Bonn; Alemania

**Keywords:**
GALAXIES; NGC7507; KINEMATICS; DYNAMICS; Astronomía; Ciencias Físicas; CIENCIAS NATURALES Y EXACTAS.

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2016.

**Language:** English.

**Abstract:**

We present a kinematic catalog for 21 M51-type galaxies. It consists of radial velocity distributions observed with long-slit spectroscopy along different position angles, for both the main and satellite components. We detect deviations from circular motion in most of the main galaxies of each pair, due to the gravitational perturbation produced by the satellite galaxy. However, some systems do not show significant distortions in their radial velocity curves. We found some differences between the directions of the photometric and kinematic major axes in the main galaxies with a bar subsystem. The Tully-Fisher relation in the B-band and Ks-band for the present sample of M51-type systems is flatter than in isolated galaxies. Using the radial velocity data set, we built a synthetic normalized radial velocity distribution, as a reference for future modeling of these peculiar systems. The synthetic rotation curve, representing the typical rotation curve of the main galaxy in an M51-type pair, is near to solid body-like inside 4 kpc, and then is nearly flat within the radial range 5-15 kpc. The relative position angles between the major axis of the main galaxy and the companion's location, as well as the amplitude of the velocity difference, indicate that the orbital motion of the satellite has a large projection on the equatorial plane of the main galaxy. In addition, the differences in radial velocity between the two galaxies indicate that the satellite's orbital motion is within the range of amplitudes of the rotation curve of the main galaxy, and all the M51-type systems studied here, except for one, are gravitationally bound.

**Author affiliation**: Gunthardt, Guillermo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina

**Author affiliation**: Diaz, Ruben Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina. Gemini Observatory; Estados Unidos

**Author affiliation**: Agüero, Maria Paz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2014.

**Language:** English.

**Abstract:**

In several previous investigations we presented models of triaxial stellar systems, both cuspy and non cuspy, that were highly stable and harboured large fractions of chaotic orbits. All our models had been obtained through cold collapses of initially spherical N-body systems, a method that necessarily results in models with strongly radial velocity distributions. Here we investigate a different method that was reported to yield cuspy triaxial models with virtually no chaos. We show that such result was probably due to the use of an inadequate chaos detection technique and that, in fact, models with significant fractions of chaotic orbits result also from that method. Besides, starting with one of the models from the first paper in this series, we obtained three different models by rendering its velocity distribution much less radially biased (i.e., more isotropic) and by modifying its axial ratios through adiabatic compression. All three models yielded much higher fractions of regular orbits than most of those from our previous work. We conclude that it is possible to obtain stable cuspy triaxial models of stellar systems whose velocity distribution is more isotropic than that of the models obtained from cold collapses. Those models still harbour large fractions of chaotic orbits and, although it is difficult to compare the results from different models, we can tentatively conclude that chaoticity is reduced by velocity isotropy.

**Author affiliation**: Carpintero, Daniel Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina. Universidad Nacional de La Plata; Argentina

**Author affiliation**: Muzzio, Juan Carlos. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina

**Author affiliation**: Navone, Hugo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas