**Authors**:
<div class="autor_fcen" id="2288">Dasso, S.</div>; <div class="autor_fcen" id="5317">Mandrini, C.H.</div>; Démoulin, P.; <div class="autor_fcen" id="5207">Luoni, M.L.</div>

**Publication Date:** 2006.

**Language:** English.

**Abstract:**

Context. Magnetic clouds are transient magnetic structures expulsed from the Sun that travel toward the external heliosphere carrying a significant amount of magnetic flux and helicity. Aims. To improve our understanding of magnetic clouds in relation to their solar source regions, we need a reliable method to compute magnetic flux and helicity in both regions. Here we evaluate the sensitivity of the results using different models, methods and magnetic cloud boundaries applied to the same magnetic cloud data. Methods. The magnetic cloud was observed by the spacecraft Wind on October 18-20, 1995. We analyze this cloud considering four different theoretical configurations (two force free and two non-force free) that have been previously proposed to model cloud fields. These four models are applied using two methods to determine the orientation of the cloud axis: minimum variance and simultaneous fitting. Finally, we present a new method to obtain the axial and azimuthal magnetic fluxes and helicity directly from the observed magnetic field when rotated to the cloud frame. Results, The results from the fitted models have biases that we analyze, The new method determines the centre and the rear boundary of the flux rope when the front boundary is known. It also gives two independent measurements in the front and back parts for the fluxes and helicity; they are free of model and boundary biases. We deduce that the leading flux of the magnetic cloud had reconnected with the overtaken solar wind magnetic field and estimate the fluxes and helicity present in the full cloud before this reconnection. © ESO 2006.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Mandrini, C.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Luoni, M.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Authors**:
Krause, Gustavo Javier; Cécere, Mariana Andrea; Zurbriggen, Ernesto; Costa, Andrea; Francile, Carlos Natale; Elaskar, Sergio Amado

**Publication Date:** 2018.

**Language:** English.

**Abstract:**

Considering the chromosphere and a stratified corona, we examine, by performing 2D compressible magnetohydrodynamics simulations, the capability of a coronal mass ejection (CME) scenario to drive a Moreton wave. We find that given a typical flux rope (FR) magnetic configuration, in initial pseudo-equilibrium, the larger the magnetic field and the lighter (and hotter) the FR, the larger the amplitude and the speed of the chromospheric disturbance, which eventually becomes aMoreton wave.We present arguments to explain why Moreton waves are much rarer than CME occurrences. In the frame of the present model, we explicitly exclude the action of flares that could be associated with the CME. Analysing the Mach number, we find that only fast magnetosonic shock waves will be able to produce Moreton events. In these cases an overexpansion of the FR is always present and it is the main factor responsible for the Moreton generation. Finally, we show that this scenario can account for the Moreton wave of the 2006 December 6 event (Francile et al. 2013).

**Author affiliation**: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina

**Author affiliation**: Cécere, Mariana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina

**Author affiliation**: Zurbriggen, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina

**Author affiliation**: Costa, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina

**Author affiliation**: Francile, Carlos Natale. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Informática. Observatorio Astronómico Félix Aguilar; Argentina

**Author affiliation**: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Publication Date:** 2009.

**Language:** English.

**Abstract:**

Context. A magnetic cloud (MC) is a magnetic flux rope in the solar wind (SW), which, at 1 AU, is observed ∼2-5 days after its expulsion from the Sun. The associated solar eruption is observed as a coronal mass ejection (CME).Aims. Both the in situ observations of plasma velocity distribution and the increase in their size with solar distance demonstrate that MCs are strongly expanding structures. The aim of this work is to find the main causes of this expansion and to derive a model to explain the plasma velocity profiles typically observed inside MCs.Methods. We model the flux rope evolution as a series of force-free field states with two extreme limits: (a) ideal magneto-hydrodynamics (MHD) and (b) minimization of the magnetic energy with conserved magnetic helicity. We consider cylindrical flux ropes to reduce the problem to the integration of ordinary differential equations. This allows us to explore a wide variety of magnetic fields at a broad range of distances to the Sun.Results. We demonstrate that the rapid decrease in the total SW pressure with solar distance is the main driver of the flux-rope radial expansion. Other effects, such as the internal over-pressure, the radial distribution, and the amount of twist within the flux rope have a much weaker influence on the expansion. We demonstrate that any force-free flux rope will have a self-similar expansion if its total boundary pressure evolves as the inverse of its length to the fourth power. With the total pressure gradient observed in the SW, the radial expansion of flux ropes is close to self-similar with a nearly linear radial velocity profile across the flux rope, as observed. Moreover, we show that the expansion rate is proportional to the radius and to the global velocity away from the Sun.Conclusions. The simple and universal law found for the radial expansion of flux ropes in the SW predicts the typical size, magnetic structure, and radial velocity of MCs at various solar distances. © 2009 ESO.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Boundary pressure; Coronal mass ejection; Cylindrical flux ropes; Expansion rate; Flux ropes; Force free fields; In-situ observations; interplanetary medium; Magnetic clouds; Magnetic energies; Magnetic flux ropes; Magnetic helicity; Plasma velocity; Radial distributions; Radial expansions; Radial velocity; Self-similar; Solar eruption; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Astrophysics; Boundary layer flow; Energy conservation; Expansion; Fluid dynamics; Magnetic fields; Magnetic flux; Magnetic structure; Magnetohydrodynamics; Ordinary differential equations; Pressure gradient; Solar wind; Sun; Velocity; Velocity distribution; Solar energy.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Publication Date:** 2013.

**Language:** English.

**Abstract:**

Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias? Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs' axis is expected to be approximately flat. However, Lepping & Wu (2010, Ann. Geophys., 28, 1539) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km s-1, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones. Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection. The large part of ICMEs without MCs could be due to a too strict criteria for MCs or to the fact that these ICMEs are encountered outside their flux rope or near the leg region, or they do not contain a flux rope. © 2013 ESO.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Affect detection; Boundary shapes; Current distribution; Decreasing functions; Flux rope model; Flux ropes; Force free fields; Frequency distributions; Heliospheres; Impact-parameter; Interplanetary coronal mass ejections; Large parts; Low field; Magnetic clouds; Magnetic flux ropes; Natural consequences; Non-detection; Parameter spaces; Rotation angles; Solar-terrestrial relations; Spacecraft trajectories; Sun: coronal mass ejection; Uniform distribution; Aspect ratio; Computer simulation; Magnetic fields; Magnetic flux; Planetary surface analysis; Spacecraft; Trajectories; Parameter estimation.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Authors**:
Démoulin, Pascal; Dasso, Sergio Ricardo; Janvier, M.

**Publication Date:** 2013.

**Language:** English.

**Abstract:**

Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias? Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs’ axis is expected to be approximately flat. However, Lepping & Wu (2010, Ann. Geophys., 28, 1539) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km s-1, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones. Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection. The large part of ICMEs without MCs could be due to a too strict criteria for MCs or to the fact that these ICMEs are encountered outside their flux rope or near the leg region, or they do not contain a flux rope.

**Author affiliation**: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia

**Author affiliation**: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina

**Author affiliation**: Janvier, M.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas

**Authors**:
<div class="autor_fcen" id="6067">Nakwacki, M.S.</div>; <div class="autor_fcen" id="2288">Dasso, S.</div>; Démoulin, P.; <div class="autor_fcen" id="5317">Mandrini, C.H.</div>; <div class="autor_fcen" id="4119">Gulisano, A.M.</div>

**Publication Date:** 2011.

**Language:** English.

**Abstract:**

Context. Significant quantities of magnetized plasma are transported from the Sun to the interstellar medium via interplanetary coronal mass ejections (ICMEs). Magnetic clouds (MCs) are a particular subset of ICMEs, forming large-scale magnetic flux ropes. Their evolution in the solar wind is complex and mainly determined by their own magnetic forces and the interaction with the surrounding solar wind. Aims. Magnetic clouds are strongly affected by the surrounding environment as they evolve in the solar wind. We study expansion of MCs, its consequent decrease in magnetic field intensity and mass density, and the possible evolution of the so-called global ideal-MHD invariants. Methods. In this work we analyze the evolution of a particular MC (observed in March 1998) using in situ observations made by two spacecraft approximately aligned with the Sun, the first one at 1 AU from the Sun and the second one at 5.4 AU. We describe the magnetic configuration of the MC using different models and compute relevant global quantities (magnetic fluxes, helicity, and energy) at both heliodistances. We also tracked this structure back to the Sun, to find out its solar source. Results. We find that the flux rope is significantly distorted at 5.4 AU. From the observed decay of magnetic field and mass density, we quantify how anisotropic is the expansion and the consequent deformation of the flux rope in favor of a cross section with an aspect ratio at 5.4 AU of ≈ 1.6 (larger in the direction perpendicular to the radial direction from the Sun). We quantify the ideal-MHD invariants and magnetic energy at both locations, and find that invariants are almost conserved, while the magnetic energy decays as expected with the expansion rate found. Conclusions. The use of MHD invariants to link structures at the Sun and the interplanetary medium is supported by the results of this multi-spacecraft study. We also conclude that the local dimensionless expansion rate, which is computed from the velocity profile observed by a single-spacecraft, is very accurate for predicting the evolution of flux ropes in the solar wind. © 2011 ESO.

**Author affiliation**: Nakwacki, M.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Mandrini, C.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Gulisano, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
Magnetic fields; Magnetohydrodynamics (MHD); Solar wind; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Sun: magnetic topology; Cross section; Dynamical evolution; Expansion rate; Flux ropes; Global quantities; Helicities; In-situ observations; Interplanetary coronal mass ejections; Interplanetary medium; Interstellar mediums; Link structure; Magnetic clouds; Magnetic configuration; Magnetic energies; Magnetic flux ropes; Magnetic force; Magnetic-field intensity; Magnetized plasmas; Magnetohydrodynamics (MHD); Mass densities; Radial direction; Solar source; Sun: coronal mass ejections (CMEs); Surrounding environment; Velocity profiles; Aspect ratio; Clouds; Expansion; Interplanetary spacecraft; Magnetic fields; Magnetic flux; Magnetoplasma; Planetary surface analysis; Solar system; Solar wind; Wind; Magnetohydrodynamics.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Publication Date:** 2011.

**Language:** English.

**Abstract:**

The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: flares; sunspots.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Authors**:
<div class="autor_fcen" id="4119">Gulisano, A.M.</div>; Démoulin, P.; <div class="autor_fcen" id="2288">Dasso, S.</div>; Rodriguez, L.

**Publication Date:** 2012.

**Language:** English.

**Abstract:**

Context. A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Aims. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. Methods. We analyze MCs observed by the Ulysses spacecraft using in situ magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called ζ. We derive the value of ζ from the in situ velocity data. Results. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (ζ = 1.05 ± 0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (ζ = 0.91 ± 0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (ζ = 0.28 ± 0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size, mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion). © 2012 ESO.

**Author affiliation**: Gulisano, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
Interplanetary medium; Magnetic fields; Magnetohydrodynamics (MHD); Solar wind; Sun: coronal mass ejections (CMEs); Astronomical units; Coronal mass ejection; Expansion properties; Expansion rate; Flux ropes; Heliospheres; In-situ; Interplanetary medium; Linear functions; Linear velocity; Magnetic clouds; Magnetized plasmas; Mean magnetic field; Minimum variance; Outer heliosphere; Plasma measurement; Plasma parameter; Power-law; Self-similar; Strong field; Sun: coronal mass ejection; Temporal evolution; Ulysses spacecraft; Velocity profiles; Magnetic fields; Magnetohydrodynamics; Magnetoplasma; Rope; Solar system; Solar wind; Velocity.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Publication Date:** 2013.

**Language:** English.

**Abstract:**

Context. Coronal mass ejections (CMEs) are routinely tracked with imagers in the interplanetary space, while magnetic clouds (MCs) properties are measured locally by spacecraft. However, both imager and in situ data do not provide any direct estimation of the general flux rope properties. Aims. The main aim of this study is to constrain the global shape of the flux rope axis from local measurements and to compare the results from in-situ data with imager observations. Methods. We performed a statistical analysis of the set of MCs observed by WIND spacecraft over 15 years in the vicinity of Earth. We analyzed the correlation between different MC parameters and studied the statistical distributions of the angles defining the local axis orientation. With the hypothesis of having a sample of MCs with a uniform distribution of spacecraft crossing along their axis, we show that a mean axis shape can be derived from the distribution of the axis orientation. As a complement, while heliospheric imagers do not typically observe MCs but only their sheath region, we analyze one event where the flux rope axis can be estimated from the STEREO imagers. Results. From the analysis of a set of theoretical models, we show that the distribution of the local axis orientation is strongly affected by the overall axis shape. Next, we derive the mean axis shape from the integration of the observed orientation distribution. This shape is robust because it is mostly determined from the overall shape of the distribution. Moreover, we find no dependence on the flux rope inclination on the ecliptic. Finally, the derived shape is fully consistent with the one derived from heliospheric imager observations of the June 2008 event. Conclusions. We have derived a mean shape of MC axis that only depends on one free parameter, the angular separation of the legs (as viewed from the Sun). This mean shape can be used in various contexts, such as studies of high-energy particles or space weather forecasts. © ESO, 2013.

**Author affiliation**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Keywords:**
Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Coronal mass ejection; High-energy particles; Orientation distributions; Solar-terrestrial relations; Space weather forecast; Statistical distribution; Sun: coronal mass ejection; Sun: heliosphere; Magnetic fields; Rope; Solar system; Weather forecasting; Interplanetary spacecraft.

**Repository:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Authors**:
Janvier, M.; Démoulin, Pascal; Dasso, Sergio Ricardo

**Publication Date:** 2013.

**Language:** English.

**Abstract:**

Context. Coronal mass ejections (CMEs) are routinely tracked with imagers in the interplanetary space, while magnetic clouds (MCs) properties are measured locally by spacecraft. However, both imager and in situ data do not provide any direct estimation of the general flux rope properties. Aims. The main aim of this study is to constrain the global shape of the flux rope axis from local measurements and to compare the results from in-situ data with imager observations. Methods. We performed a statistical analysis of the set of MCs observed by WIND spacecraft over 15 years in the vicinity of Earth. We analyzed the correlation between different MC parameters and studied the statistical distributions of the angles defining the local axis orientation. With the hypothesis of having a sample of MCs with a uniform distribution of spacecraft crossing along their axis, we show that a mean axis shape can be derived from the distribution of the axis orientation. As a complement, while heliospheric imagers do not typically observe MCs but only their sheath region, we analyze one event where the flux rope axis can be estimated from the STEREO imagers. Results. From the analysis of a set of theoretical models, we show that the distribution of the local axis orientation is strongly affected by the overall axis shape. Next, we derive the mean axis shape from the integration of the observed orientation distribution. This shape is robust because it is mostly determined from the overall shape of the distribution. Moreover, we find no dependence on the flux rope inclination on the ecliptic. Finally, the derived shape is fully consistent with the one derived from heliospheric imager observations of the June 2008 event. Conclusions. We have derived a mean shape of MC axis that only depends on one free parameter, the angular separation of the legs (as viewed from the Sun). This mean shape can be used in various contexts, such as studies of high-energy particles or space weather forecasts.

**Author affiliation**: Janvier, M.. Observatoire de Paris. LESIA; Francia;

**Author affiliation**: Démoulin, Pascal. Observatoire de Paris. LESIA; Francia;

**Author affiliation**: Dasso, Sergio Ricardo. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Departamento de Fisica; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina

**Repository:** CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas