**Fecha de publicación:** 2013.

**Idioma:** inglés.

**Resumen:**

Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias? Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs' axis is expected to be approximately flat. However, Lepping & Wu (2010, Ann. Geophys., 28, 1539) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km s-1, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones. Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection. The large part of ICMEs without MCs could be due to a too strict criteria for MCs or to the fact that these ICMEs are encountered outside their flux rope or near the leg region, or they do not contain a flux rope. © 2013 ESO.

**Afiliación de los autores**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Palabras claves:**
Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Affect detection; Boundary shapes; Current distribution; Decreasing functions; Flux rope model; Flux ropes; Force free fields; Frequency distributions; Heliospheres; Impact-parameter; Interplanetary coronal mass ejections; Large parts; Low field; Magnetic clouds; Magnetic flux ropes; Natural consequences; Non-detection; Parameter spaces; Rotation angles; Solar-terrestrial relations; Spacecraft trajectories; Sun: coronal mass ejection; Uniform distribution; Aspect ratio; Computer simulation; Magnetic fields; Magnetic flux; Planetary surface analysis; Spacecraft; Trajectories; Parameter estimation.

**Repositorio:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Autores**:
<div class="autor_fcen" id="4119">Gulisano, A.M.</div>; Démoulin, P.; <div class="autor_fcen" id="2288">Dasso, S.</div>; Rodriguez, L.

**Fecha de publicación:** 2012.

**Idioma:** inglés.

**Resumen:**

Context. A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Aims. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. Methods. We analyze MCs observed by the Ulysses spacecraft using in situ magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called ζ. We derive the value of ζ from the in situ velocity data. Results. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (ζ = 1.05 ± 0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (ζ = 0.91 ± 0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (ζ = 0.28 ± 0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size, mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion). © 2012 ESO.

**Afiliación de los autores**: Gulisano, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Afiliación de los autores**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Palabras claves:**
Interplanetary medium; Magnetic fields; Magnetohydrodynamics (MHD); Solar wind; Sun: coronal mass ejections (CMEs); Astronomical units; Coronal mass ejection; Expansion properties; Expansion rate; Flux ropes; Heliospheres; In-situ; Interplanetary medium; Linear functions; Linear velocity; Magnetic clouds; Magnetized plasmas; Mean magnetic field; Minimum variance; Outer heliosphere; Plasma measurement; Plasma parameter; Power-law; Self-similar; Strong field; Sun: coronal mass ejection; Temporal evolution; Ulysses spacecraft; Velocity profiles; Magnetic fields; Magnetohydrodynamics; Magnetoplasma; Rope; Solar system; Solar wind; Velocity.

**Repositorio:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Fecha de publicación:** 2013.

**Idioma:** inglés.

**Resumen:**

Context. Coronal mass ejections (CMEs) are routinely tracked with imagers in the interplanetary space, while magnetic clouds (MCs) properties are measured locally by spacecraft. However, both imager and in situ data do not provide any direct estimation of the general flux rope properties. Aims. The main aim of this study is to constrain the global shape of the flux rope axis from local measurements and to compare the results from in-situ data with imager observations. Methods. We performed a statistical analysis of the set of MCs observed by WIND spacecraft over 15 years in the vicinity of Earth. We analyzed the correlation between different MC parameters and studied the statistical distributions of the angles defining the local axis orientation. With the hypothesis of having a sample of MCs with a uniform distribution of spacecraft crossing along their axis, we show that a mean axis shape can be derived from the distribution of the axis orientation. As a complement, while heliospheric imagers do not typically observe MCs but only their sheath region, we analyze one event where the flux rope axis can be estimated from the STEREO imagers. Results. From the analysis of a set of theoretical models, we show that the distribution of the local axis orientation is strongly affected by the overall axis shape. Next, we derive the mean axis shape from the integration of the observed orientation distribution. This shape is robust because it is mostly determined from the overall shape of the distribution. Moreover, we find no dependence on the flux rope inclination on the ecliptic. Finally, the derived shape is fully consistent with the one derived from heliospheric imager observations of the June 2008 event. Conclusions. We have derived a mean shape of MC axis that only depends on one free parameter, the angular separation of the legs (as viewed from the Sun). This mean shape can be used in various contexts, such as studies of high-energy particles or space weather forecasts. © ESO, 2013.

**Afiliación de los autores**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Palabras claves:**
Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Coronal mass ejection; High-energy particles; Orientation distributions; Solar-terrestrial relations; Space weather forecast; Statistical distribution; Sun: coronal mass ejection; Sun: heliosphere; Magnetic fields; Rope; Solar system; Weather forecasting; Interplanetary spacecraft.

**Repositorio:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales

**Fecha de publicación:** 2009.

**Idioma:** inglés.

**Resumen:**

Context. Magnetic clouds (MCs) are formed by magnetic flux ropes that are ejected from the Sun as coronal mass ejections. These structures generally have low plasma beta and travel through the interplanetary medium interacting with the surrounding solar wind. Thus, the dynamical evolution of the internal magnetic structure of a MC is a consequence of both the conditions of its environment and of its own dynamical laws, which are mainly dominated by magnetic forces.Aims. With in-situ observations the magnetic field is only measured along the trajectory of the spacecraft across the MC. Therefore, a magnetic model is needed to reconstruct the magnetic configuration of the encountered MC. The main aim of the present work is to extend the widely used cylindrical model to arbitrary cross-section shapes.Methods. The flux rope boundary is parametrized to account for a broad range of shapes. Then, the internal structure of the flux rope is computed by expressing the magnetic field as a series of modes of a linear force-free field.Results. We analyze the magnetic field profile along straight cuts through the flux rope, in order to simulate the spacecraft crossing through a MC. We find that the magnetic field orientation is only weakly affected by the shape of the MC boundary. Therefore, the MC axis can approximately be found by the typical methods previously used (e.g., minimum variance). The boundary shape affects the magnetic field strength most. The measurement of how much the field strength peaks along the crossing provides an estimation of the aspect ratio of the flux-rope cross-section. The asymmetry of the field strength between the front and the back of the MC, after correcting for the time evolution (i.e., its aging during the observation of the MC), provides an estimation of the cross-section global bending. A flat or/and bent cross-section requires a large anisotropy of the total pressure imposed at the MC boundary by the surrounding medium.Conclusions. The new theoretical model developed here relaxes the cylindrical symmetry hypothesis. It is designed to estimate the cross-section shape of the flux rope using the in-situ data of one spacecraft. This allows a more accurate determination of the global quantities, such as magnetic fluxes and helicity. These quantities are especially important for both linking an observed MC to its solar source and for understanding the corresponding evolution. © 2009 ESO.

**Afiliación de los autores**: Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.

**Palabras claves:**
Interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Arbitrary cross section; Boundary shapes; Coronal mass ejection; Cylindrical models; Cylindrical symmetry; Dynamical evolution; Field strengths; Flux ropes; Global quantities; Helicities; In-situ data; In-situ observations; Internal structure; Interplanetary medium; Large anisotropy; Magnetic clouds; Magnetic configuration; Magnetic field orientations; Magnetic field profile; Magnetic field strengths; Magnetic flux ropes; Magnetic models; Minimum variance; Solar source; Sun: coronal mass ejection; Sun: magnetic field; Theoretical models; Time evolutions; Total pressure; Aspect ratio; Astrophysics; Boundary layer flow; Interplanetary spacecraft; Magnetic fields; Magnetic flux; Magnetic structure; Planetary surface analysis; Solar wind; Sun; Semiconductor counters.

**Repositorio:** Biblioteca Digital (UBA-FCEN). Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales