Publication Date: 2009.
Language: English.
Abstract:
Maize production is affected by water and nitrogen (N) deficit either separately or joined, but this fact is not completely defined. The aim was to evaluate the fate of N in maize fertilized and subjected to water stress in controlled conditions. A greenhouse experiment was carried out at the University of Buenos Aires campus. The design was a 2 × 2 factorial with four replications. The factors were N: 70 and 140 kg N ha-1 as labeled urea (15N), and water: 100% or 50% of the potential evapotranspiration. The harvest of aerial and root biomass was carried out at R1 stage. Nitrogen in plants, soils nitrate, ammonia volatilization, and 15N percentage were determined. Obtained results only partially agree with previous research. Water stress depressed aerial biomass production independently of N doses. When water was limiting, the uptake of N from fertilizer was independent of N. When water was not limiting, N uptake increased with the higher N doses. Volatilization losses were 3.7 to 7.8% of N applied as fertilizer. Plant N recovers was around 45% of the N applied, except in treatment water stressed with high N rate (19%). Nitrate-N from the fertilizer in the soil at harvest and accumulated N from the fertilizer in plant were lineally related (r2 = 0.54; p < 0.001). Important destinations of N were accumulation in plant, volatilization and incorporation into soil organic matter. However, residual nitrate was a main fate in heavily fertilized and water deficit treatment. This process could lead to the eventual nitrate leaching. Copyright © Taylor & Francis Group, LLC.
Author affiliation: Rimski Korsakov, Helena. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina
Author affiliation: Rubio, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina
Author affiliation: Lavado, Raul Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina
Repository: CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas
Authors: Yahdjian, María Laura; Sala, Osvaldo Esteban
Publication Date: 2010.
Language: English.
Abstract:
Arid ecosystems receive precipitation pulses of different sizes that may differentially affect nitrogen (N) losses and N turnover during the growing season. We designed a rainfall manipulation experiment in the Patagonian steppe, southern Argentina, where we simulated different precipitation patterns by adding the same amount of water in evenly spaced three-small rainfall events or in one-single large rainfall event, three times during a growing season. We measured the effect of the size of rainfall pulses on N mineralization and N losses by denitrification, ammonia volatilization, and nitrate and ammonia leaching. Irrigation pulses stimulated N mineralization (P < 0.05), with small and frequent pulses showing higher responses than large pulses (P < 0.10). Irrigation effects were transient and did not result in changes in seasonal net N mineralization suggesting a long-term substrate limitation. Water pulses stimulated gaseous N losses by denitrification, with large pulses showing higher responses than small pulses (P < 0.05), but did not stimulate ammonia volatilization. Nitrate leaching also was higher after large than after small precipitation events (P < 0.05). Small events produced higher N transformations and lower N losses by denitrification and nitrate leaching than large events, which would produce higher N availability for plant growth. Climate change is expected to increase the frequency of extreme precipitation events and the proportion of large to small rainfall events. Our results suggest that these changes would result in reduced N availability and a competitive advantage for deep-rooted species that prefer nitrate over ammonia. Similarly, the ammonium:nitrate ratio might decrease because large events foster nitrate losses but not ammonium losses. © 2010 Springer Science+Business Media, LLC.
Author affiliation: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Author affiliation: Sala, Osvaldo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Brown University; Estados Unidos
Repository: CONICET Digital (CONICET). Consejo Nacional de Investigaciones Científicas y Técnicas