Aplicación de técnicas de minería de datos al análisis de situación y comportamiento académico de alumnos de la UGD

Autores
Eckert, Karina; Suénaga, Roberto
Año de publicación
2013
Idioma
español
Tipo de recurso
documento de conferencia
Estado
Versión publicada
Descripción
En el ámbito educativo es evidente la necesidad de disponer de sistemas de gestión que permitan tomar decisiones académicas y elaborar estrategias a partir del conocimiento oportuno, ya que esto no solo incide directamente sobre la funcionalidad de los departamentos académicos, u otras cuestiones internas, sino que también podrían incidir sobre actividades como las evaluaciones y acreditaciones de instituciones y carreras. Entre los problemas más complejos que enfrentan las instituciones de educación podemos mencionar: mejorar la calidad académica, disminuir la deserción y la reprobación, evitar el atraso estudiantil y los bajos índices de eficiencia relacionado con las tasas de graduación. Esto requiere gestionar estrategias y tomar medidas frente a estos acontecimientos; para ello es posible recurrir al proceso denominado Minería de Datos Educacional (MDE), es decir, la aplicación del proceso de Descubrimiento o Extracción de Conocimiento en Bases de Datos (KDD) en ámbito educativo. En el presente trabajo se describe y expone la aplicación del proceso KDD (por su siglas en inglés), conocido como Minería de Datos (MD) en un entorno educativo, más precisamente a la información académica de la Universidad Gastón Dachary (UGD). El proceso consiste en una serie de etapas que parten de la selección y captura de los datos, pasando por una serie de actividades relacionadas a la integración, recopilación y el filtrado de los mismos (pre-procesamiento), para luego ser procesados, analizados y evaluados hasta obtener conocimiento adicional. Para ello, es necesario llevar a cabo un proceso iterativo que incluye numerosas consultas de selección a la base de datos, depuración de los datos, utilización de diferentes criterios de representación; también se aplican diferentes técnicas y algoritmos de MD, tanto descriptivas como predictivas.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
descubrimiento de conocimiento en bases de datos (KDD)
minería de datos educativos (EDM)
rendimiento académico
herramientas de minería de datos
Data mining
Nivel de accesibilidad
Acceso abierto
Licencia
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/27103