Weighted a priori estimates for elliptic equations

Authors
Cejas, María Eugenia; Duran, Ricardo Guillermo
Publication Year
2018
Language
English
Format
article
Status
Published version
Description
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class.
Fil: Cejas, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Subject
ELLIPTIC EQUATIONS
WEIGHTED A PRIORI ESTIMATES
Matemática Pura
Matemáticas
CIENCIAS NATURALES Y EXACTAS
Access level
Open access
License
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repository
CONICET Digital (CONICET)
Institution
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identifier
oai:ri.conicet.gov.ar:11336/84701