25 Years of Self-Organized Criticality: Solar and Astrophysics

Authors
Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura Fernanda; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim
Publication Year
2016
Language
English
Format
article
Status
Published version
Description
Shortly after the seminal paper “Self-Organized Criticality: An explanation of 1/fnoise” by Bak et al. (1987), the idea has been applied to solar physics, in “Avalanches and the Distribution of Solar Flares” by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
Fil: Aschwanden, Markus J.. Lockheed Martin Corporation; Estados Unidos
Fil: Crosby, Norma B.. Belgian Institute For Space Aeronomy; Bélgica
Fil: Dimitropoulou, Michaila. University Of Athens; Grecia
Fil: Georgoulis, Manolis K.. Academy Of Athens; Grecia
Fil: Hergarten, Stefan. Universitat Freiburg Im Breisgau; Alemania
Fil: McAteer, James. University Of New Mexico; Estados Unidos
Fil: Milovanov, Alexander V.. Max Planck Institute For The Physics Of Complex Systems; Alemania. Russian Academy Of Sciences. Space Research Institute; Rusia. Enea Centro Ricerche Frascati; Italia
Fil: Mineshige, Shin. Kyoto University; Japón
Fil: Morales, Laura Fernanda. Canadian Space Agency; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nishizuka, Naoto. Japan National Institute Of Information And Communications Technology; Japón
Fil: Pruessner, Gunnar. Imperial College London; Reino Unido
Fil: Sanchez, Raul. Universidad Carlos Iii de Madrid. Instituto de Salud; España
Fil: Sharma, A. Surja. University Of Maryland; Estados Unidos
Fil: Strugarek, Antoine. University Of Montreal; Canadá
Fil: Uritsky, Vadim. Nasa Goddard Space Flight Center; Estados Unidos
Subject
COSMIC RAYS
INSTABILITIES
METHODS: STATISTICAL
PLANETS AND SATELLITES: RINGS
STARS: FLARE
SUN: FLARE
Astronomía
Ciencias Físicas
CIENCIAS NATURALES Y EXACTAS
Access level
Open access
License
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repository
CONICET Digital (CONICET)
Institution
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identifier
oai:ri.conicet.gov.ar:11336/17486