Size of precipitation pulses controls nitrogen transformation and losses in an arid Patagonian ecosystem

Authors
Yahdjian, María Laura; Sala, Osvaldo Esteban
Publication Year
2010
Language
English
Format
article
Status
Published version
Description
Arid ecosystems receive precipitation pulses of different sizes that may differentially affect nitrogen (N) losses and N turnover during the growing season. We designed a rainfall manipulation experiment in the Patagonian steppe, southern Argentina, where we simulated different precipitation patterns by adding the same amount of water in evenly spaced three-small rainfall events or in one-single large rainfall event, three times during a growing season. We measured the effect of the size of rainfall pulses on N mineralization and N losses by denitrification, ammonia volatilization, and nitrate and ammonia leaching. Irrigation pulses stimulated N mineralization (P < 0.05), with small and frequent pulses showing higher responses than large pulses (P < 0.10). Irrigation effects were transient and did not result in changes in seasonal net N mineralization suggesting a long-term substrate limitation. Water pulses stimulated gaseous N losses by denitrification, with large pulses showing higher responses than small pulses (P < 0.05), but did not stimulate ammonia volatilization. Nitrate leaching also was higher after large than after small precipitation events (P < 0.05). Small events produced higher N transformations and lower N losses by denitrification and nitrate leaching than large events, which would produce higher N availability for plant growth. Climate change is expected to increase the frequency of extreme precipitation events and the proportion of large to small rainfall events. Our results suggest that these changes would result in reduced N availability and a competitive advantage for deep-rooted species that prefer nitrate over ammonia. Similarly, the ammonium:nitrate ratio might decrease because large events foster nitrate losses but not ammonium losses. © 2010 Springer Science+Business Media, LLC.
Fil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Sala, Osvaldo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Brown University; Estados Unidos
Subject
AMMONIA VOLATILIZATION
ARID ECOSYSTEMS
DENITRIFICATION
NET N MINERALIZATION
NITRATE LEACHING
NITROGEN-WATER INTERACTIONS
PATAGONIAN STEPPE
PRECIPITATION PULSES
SOIL INORGANIC N
Otras Ciencias Biológicas
Ciencias Biológicas
CIENCIAS NATURALES Y EXACTAS
Access level
Restricted access
License
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repository
CONICET Digital (CONICET)
Institution
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identifier
oai:ri.conicet.gov.ar:11336/71468