Model-data fusion across ecosystems: from multisite optimizations to global simulations

Authors
Kuppel, Sylvain; Peylin, Philippe; Maignan, Fabienne; Chevallier, Frédéric; Kiely, G.; Montagnani, L.; Cescatti, A.
Publication Year
2014
Language
English
Format
article
Status
Published version
Description
This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with per- formances often comparable to those of the correspond- ing site-specific optimizations. Besides reducing the PFT-averaged model?data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate ever- green forests, and better model?data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to defi- ciencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP ? gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite pa- rameter sets are then tested against CO2 concentrations mea- sured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.
Fil: Kuppel, Sylvain. Centre National de la Recherche Scientifique. Laboratoire des Sciences du Climat et de l’Environnement; Francia
Fil: Peylin, Philippe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Centre National de la Recherche Scientifique. Laboratoire des Sciences du Climat et de l’Environnement; Francia
Fil: Maignan, Fabienne. Centre National de la Recherche Scientifique. Laboratoire des Sciences du Climat et de l’Environnement; Francia
Fil: Chevallier, Frédéric. Centre National de la Recherche Scientifique. Laboratoire des Sciences du Climat et de l’Environnement; Francia
Fil: Kiely, G.. Forest Services; Italia
Fil: Montagnani, L.. University College Cork; Irlanda
Fil: Cescatti, A.. Institute for Environment and Sustainability; Italia
Subject
global ecosystem model
data assimilation
carbon cycle
water cycle
Geociencias multidisciplinaria
Ciencias de la Tierra y relacionadas con el Medio Ambiente
CIENCIAS NATURALES Y EXACTAS
Access level
Open access
License
https://creativecommons.org/licenses/by/2.5/ar/
Repository
CONICET Digital (CONICET)
Institution
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identifier
oai:ri.conicet.gov.ar:11336/14637