A quantum logical and geometrical approach to the study of improper mixtures

Autores
<div class="autor_fcen" id="2633">Domenech, G.</div>; <div class="autor_fcen" id="4302">Holik, F.</div>; <div class="autor_fcen" id="5562">Massri, C.</div>
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
Versión publicada
Descripción
We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that-alike the classical case-quantum interactions produce nontrivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems. © 2010 American Institute of Physics.
Fil:Domenech, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Holik, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Massri, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Phys. 2010;51(5)
Nivel de accesibilidad
Acceso abierto
Licencia
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
snrd:HASH015226bc89be44c3b6d67d5e